-
2
-
-
9444240317
-
Data mining based on rough sets
-
In:, editor., Hershey, PA: Idea Group Publ.
-
Grzymala-Busse JW, Ziarko W., Data mining based on rough sets. In:, Wang J, editor. Data mining: Opportunities and challenges, Hershey, PA: Idea Group Publ.; 2003. pp 142-173.
-
(2003)
Data Mining: Opportunities and Challenges
, pp. 142-173
-
-
Grzymala-Busse, J.W.1
Ziarko, W.2
Wang, J.3
-
3
-
-
27744565978
-
Int J Comput Inform Sci
-
Pawlak Z., Rough sets. Int J Comput Inform Sci 1982; 11: 341-356.
-
(1982)
Rough Sets
, vol.11
, pp. 341-356
-
-
Pawlak, Z.1
-
6
-
-
0027543613
-
Variable precision rough set model
-
DOI 10.1016/0022-0000(93)90048-2
-
Ziarko W., Variable precision rough set model. J Comput Syst Sci 1993; 46 (1): 39-59. (Pubitemid 23639120)
-
(1993)
Journal of Computer and System Sciences
, vol.46
, Issue.1
, pp. 39-59
-
-
Ziarko Wojciech1
-
7
-
-
0001905486
-
Knowledge acquisition under uncertainty - A rough set approach
-
Grzymala-Busse JW., Knowledge acquisition under uncertainty - a rough set approach. J Intell Robot Syst 1988; 1: 3-16.
-
(1988)
J Intell Robot Syst
, vol.1
, pp. 3-16
-
-
Grzymala-Busse, J.W.1
-
9
-
-
0024038052
-
Rough sets: Probabilistic versus deterministic approach
-
Pawlak Z, Wong SKM, Ziarko W., Rough sets: probabilistic versus deterministic approach. Int J Man-Mach Stud 1988; 29: 81-95.
-
(1988)
Int J Man-Mach Stud
, vol.29
, pp. 81-95
-
-
Pawlak, Z.1
Wong, S.K.M.2
Ziarko, W.3
-
10
-
-
38049013199
-
Decision-theoretic rough set models
-
In:, Toronto, Canada
-
Yao YY., Decision-theoretic rough set models. In: Proc 2nd Int Conf Rough Sets Knowl Technol, Toronto, Canada, 2007. pp 1-12.
-
(2007)
Proc 2nd Int Conf Rough Sets Knowl Technol
, pp. 1-12
-
-
Yao, Y.Y.1
-
11
-
-
78650133460
-
A decision theoretic framework for approximate concepts
-
Yao YY, Wong SKM., A decision theoretic framework for approximate concepts. Int J Man-Mach Stud 1996; 37: 103-119.
-
(1996)
Int J Man-Mach Stud
, vol.37
, pp. 103-119
-
-
Yao, Y.Y.1
Wong, S.K.M.2
-
12
-
-
0242322855
-
A decision-theoretic rough set model
-
In:, Charlotte, NC,. pp 395
-
Yao YY, Wong SKM, Lingras P., A decision-theoretic rough set model. In: Proc 5th Int Symp Methodol Intell Syst, Charlotte, NC, 1990. pp 388-395.
-
(1990)
Proc 5th Int Symp Methodol Intell Syst
, pp. 388
-
-
Yao, Y.Y.1
Wong, S.K.M.2
Lingras, P.3
-
13
-
-
0029307417
-
PRIMEROSE: Probabilistic rule induction method based on rough sets and resampling methods
-
Tsumoto S, Tanaka H., PRIMEROSE: probabilistic rule induction method based on rough sets and resampling methods. Comput Intell 1995; 11: 389-405.
-
(1995)
Comput Intell
, vol.11
, pp. 389-405
-
-
Tsumoto, S.1
Tanaka, H.2
-
14
-
-
0031189666
-
A new version of the rule induction system LERS
-
Grzymala-Busse JW., A new version of the rule induction system LERS. Fundam Inform 1997; 31: 27-39. (Pubitemid 126541542)
-
(1996)
Fundamenta Informaticae
, vol.31
, Issue.1
, pp. 27-39
-
-
Grzymala-Busse, J.W.1
-
16
-
-
57049085087
-
A comparison of the LERS classification system and rule management in PRSM
-
In:, Akron, OH
-
Grzymala-Busse JW, Yao Y., A comparison of the LERS classification system and rule management in PRSM. In: Proc 6th Int Conf Rough Sets Curr Trends Comput, Akron, OH, 2008. pp 202-210.
-
(2008)
Proc 6th Int Conf Rough Sets Curr Trends Comput
, pp. 202-210
-
-
Grzymala-Busse, J.W.1
Yao, Y.2
-
17
-
-
0346879002
-
-
Technical Report, Department of Computer Science, University of Kansas
-
Chan CC, Grzymala-Busse JW., On the attribute redundancy and the learning programs ID3, PRISM, and LEM2. Technical Report, Department of Computer Science, University of Kansas, 1991.
-
(1991)
On the Attribute Redundancy and the Learning Programs ID3, PRISM, and LEM2
-
-
Chan, C.C.1
Grzymala-Busse, J.W.2
-
20
-
-
52949127977
-
Parameterized rough set model using rough membership and bayesian confirmation measures
-
Greco S, Matarazzo B, Slowinski R., Parameterized rough set model using rough membership and bayesian confirmation measures. Int J Approx Reason 2008; 49: 285-300.
-
(2008)
Int J Approx Reason
, vol.49
, pp. 285-300
-
-
Greco, S.1
Matarazzo, B.2
Slowinski, R.3
-
21
-
-
49849088318
-
Stochastic dominance-based rough set model for ordinal classification
-
Kotłowski W, Dembczyński K, Greco S, Słński R., Stochastic dominance-based rough set model for ordinal classification. Inform Sci, 2008; 178: 4019-4037.
-
(2008)
Inform Sci
, vol.178
, pp. 4019-4037
-
-
Kotłowski, W.1
Dembczyński, K.2
Greco, S.3
Słński, R.4
-
23
-
-
70449130467
-
Three-way decisions with probabilistic rough sets
-
Yao YY., Three-way decisions with probabilistic rough sets. Inform Sci 2010; 180: 341-353.
-
(2010)
Inform Sci
, vol.180
, pp. 341-353
-
-
Yao, Y.Y.1
-
24
-
-
85149612939
-
Fast effective rule induction
-
In:, Tahoe City, CA
-
Cohen W., Fast effective rule induction. In: Proc 12th Int Conf Mach Learning, Tahoe City, CA, 1995. pp 115-123.
-
(1995)
Proc 12th Int Conf Mach Learning
, pp. 115-123
-
-
Cohen, W.1
-
25
-
-
0031139832
-
Pruning algorithms for rule learning
-
Fuernkranz J., Pruning algorithms for rule learning. Mach Learn 1997; 27: 139-172.
-
(1997)
Mach Learn
, vol.27
, pp. 139-172
-
-
Fuernkranz, J.1
-
26
-
-
0024735689
-
Classifier systems and genetic algorithms
-
Booker LB, Goldberg DE, Holland JF., Classifier systems and genetic algorithms. In:, Carbonell JG, editor. Machine learning. Paradigms and methods. Boston: MIT Press; 1990. pp 235-282. (Pubitemid 20607829)
-
(1989)
Artificial Intelligence
, vol.40
, Issue.1-3
, pp. 235-282
-
-
Booker, L.B.1
Goldberg, D.E.2
Holland, J.H.3
-
27
-
-
0003707420
-
-
Boston: MIT Press
-
Holland JH, Holyoak KJ, Nisbett RE., Induction. Processes of inference, learning, and discovery. Boston: MIT Press; 1986.
-
(1986)
Induction. Processes of Inference, Learning, and Discovery
-
-
Holland, J.H.1
Holyoak, K.J.2
Nisbett, R.E.3
|