메뉴 건너뛰기




Volumn 17, Issue 1, 2011, Pages 46-53

Comparison of decision tree algorithms for predicting potential air pollutant emissions with data mining models

Author keywords

Air pollution; Artificial intelligence; Classification and prediction; Data mining; Decision support systems

Indexed keywords

ACCURACY ASSESSMENT; AIR QUALITY; ALGORITHM; ARTIFICIAL INTELLIGENCE; ATMOSPHERIC PLUME; ATMOSPHERIC POLLUTION; DATA MINING; DATA SET; DECISION ANALYSIS; DECISION SUPPORT SYSTEM; INDUSTRIAL EMISSION;

EID: 79955158636     PISSN: 17262135     EISSN: 16848799     Source Type: Journal    
DOI: 10.3808/jei.201100186     Document Type: Article
Times cited : (50)

References (36)
  • 1
    • 47249108157 scopus 로고    scopus 로고
    • 2) concentration levels from the Mina Al-Fahal Refinery in Oman using artificial neural networks
    • Abdul-Wahab, S.A., and Al-Alawi, S.M. (2008). Prediction of sulfur dioxide (SO2) concentration levels from the Mina Al-Fahal Refinery in Oman using artificial neural networks. Am. J. Environ. Sci., 4(5), 473-481.
    • (2008) Am. J. Environ. Sci , vol.4 , Issue.5 , pp. 473-481
    • Abdul-Wahab, S.A.1    Al-Alawi, S.M.2
  • 2
    • 45549087993 scopus 로고    scopus 로고
    • An assessment of meteorological effects on air quality in Windsor, Ontario, Canada - Sensitivity to temporal modeling resolution
    • doi:10.3808/jei.200800110
    • Anastassopoulos, A., Nguyen, S., and Xu, X. (2008). An assessment of meteorological effects on air quality in Windsor, Ontario, Canada - Sensitivity to temporal modeling resolution, J. Env. Inform., 11(2), 45-50. doi:10.3808/jei.200800110
    • (2008) J. Env. Inform , vol.11 , Issue.2 , pp. 45-50
    • Anastassopoulos, A.1    Nguyen, S.2    Xu, X.3
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • doi: 10.1023/A:1010933404324
    • Breiman, L. (2001). Random forests. Mach. Learning, 45(1), 5-32. doi: 10.1023/A:1010933404324
    • (2001) Mach. Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 37249092976 scopus 로고    scopus 로고
    • A comparison of four data mining models: Bayes, neural network, SVM and decision trees in identifying syndromes in coronary heart disease
    • ISNN 2007 doi: 10.1007/978-3-540-72383-7_148
    • Chen, J., Xing, Y., Xi, G., Chen, J., Yi, J., Zhao, D., and Wang, J. (2007). A comparison of four data mining models: bayes, neural network, SVM and decision trees in identifying syndromes in coronary heart disease. ISNN 2007, Lecture Notes Elect. Eng., 4491, 1274-1279. doi: 10.1007/978-3-540-72383-7_148
    • (2007) Lecture Notes Elect. Eng , vol.4491 , pp. 1274-1279
    • Chen, J.1    Xing, Y.2    Xi, G.3    Chen, J.4    Yi, J.5    Zhao, D.6    Wang, J.7
  • 6
    • 17644370689 scopus 로고    scopus 로고
    • Air Quality Prediction in Milan: Feed-forward Neural Networks, Pruned Neural Networks and Lazy Learning
    • doi:10.1016/j.ecolmodel.2005.01.008
    • Corani, G.(2005). Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy learning. Ecol. Model., 185, 513-529. doi:10.1016/j.ecolmodel.2005.01.008
    • (2005) Ecol. Model , vol.185 , pp. 513-529
    • Corani, G.1
  • 8
    • 78651548356 scopus 로고    scopus 로고
    • Human Readable Rule Induction in Medical Data Mining
    • doi: 10.1007/978-0-387-84814-3_79
    • Daud, N.R., and Corne, D.W. (2009). Human Readable Rule Induction in Medical Data Mining, Lecture Notes Elect. Eng., 27(7), 787-798. doi: 10.1007/978-0-387-84814-3_79
    • (2009) Lecture Notes Elect. Eng , vol.27 , Issue.7 , pp. 787-798
    • Daud, N.R.1    Corne, D.W.2
  • 9
    • 0002922219 scopus 로고    scopus 로고
    • Measurement and prediction of ozone levels around a heavily industrialized area: A neural network approach
    • doi:10.1016/S1093-0191(00)00042-3
    • Elkamel, A., Abdul-Wahab, S., Bouhamra, W., and Alper, E. (2001). Measurement and prediction of ozone levels around a heavily industrialized area: a neural network approach. Adv. Environ. Res., 5(1), 47-59. doi:10.1016/S1093-0191(00)00042-3
    • (2001) Adv. Environ. Res. , vol.5 , Issue.1 , pp. 47-59
    • Elkamel, A.1    Abdul-Wahab, S.2    Bouhamra, W.3    Alper, E.4
  • 10
    • 79952923438 scopus 로고    scopus 로고
    • Comparison of seven algorithms to predict breast cancer survival
    • Endo, A., Shibata, T., and Tanaka, H. (2008). Comparison of seven algorithms to predict breast cancer survival. Biomedical Soft Comput. Hum. Sci., 13(2), 11-16.
    • (2008) Biomedical Soft Comput. Hum. Sci , vol.13 , Issue.2 , pp. 11-16
    • Endo, A.1    Shibata, T.2    Tanaka, H.3
  • 12
    • 68949192783 scopus 로고    scopus 로고
    • 2 in Belgium
    • doi:10.1016/j.atomsenv.2009.05.036
    • Fasbender, D., Brasseur, O., and Bogaert, P. (2009). Bayesian data fusion for space-time prediction of air pollutants: The case of NO2 in Belgium. Atmos. Environ., 43, 4632-4645. doi:10.1016/j.atomsenv. 2009.05.036
    • (2009) Atmos. Environ. , vol.43 , pp. 4632-4645
    • Fasbender, D.1    Brasseur, O.2    Bogaert, P.3
  • 13
    • 70349280929 scopus 로고    scopus 로고
    • An experimental comparison of performance measures for classifycation
    • doi:10.1016/j.patrec.2008.08.010
    • Ferri, C., Hernández-Orallo, J., and Modroiu, R. (2009). An experimental comparison of performance measures for classifycation. Pattern Recognit. Lett., 30(1), 27-38. doi:10.1016/j. patrec.2008.08.010
    • (2009) Pattern Recognit. Lett , vol.30 , Issue.1 , pp. 27-38
    • Ferri, C.1    Hernández-Orallo, J.2    Modroiu, R.3
  • 14
    • 3543051838 scopus 로고    scopus 로고
    • Functional trees
    • doi:10.1023/B:MACH.0000027782.67192.13
    • Gama, J. (2004). Functional trees. Mach. Learning, 55(3), 219-250. doi:10.1023/B:MACH.0000027782.67192.13
    • (2004) Mach. Learning , vol.55 , Issue.3 , pp. 219-250
    • Gama, J.1
  • 15
    • 79952229665 scopus 로고    scopus 로고
    • Pattern classification with missing data: A review
    • doi:10.1007/s00521-009-0295-6
    • García-Laencina, P.J., Sancho-Gómez, J-L., and Figueiras-Vidal, A.R. (2010). Pattern classification with missing data: a review. Neural Comput. Appl., 19(2), 263-282. doi:10.1007/s00521-009-0295-6
    • (2010) Neural Comput. Appl , vol.19 , Issue.2 , pp. 263-282
    • García-Laencina, P.J.1    Sancho-Gómez, J.-L.2    Figueiras-Vidal, A.R.3
  • 16
    • 43849111987 scopus 로고    scopus 로고
    • A new scheme to predict chaotic time series of air pollutant concentrations using artificial neural network and nearest neighbor searching
    • doi:10.1016/j.atmosenv.2008.01.005
    • Gautam, A.K., Chelani, A.B., Jain, V.K., and Devotta, S. (2008). A new scheme to predict chaotic time series of air pollutant concentrations using artificial neural network and nearest neighbor searching. Atmos. Environ., 42 (18), 4409-4417. doi:10.1016/j.atmosenv. 2008.01.005
    • (2008) Atmos. Environ. , vol.42 , Issue.18 , pp. 4409-4417
    • Gautam, A.K.1    Chelani, A.B.2    Jain, V.K.3    Devotta, S.4
  • 17
    • 84945261048 scopus 로고    scopus 로고
    • Multiclass alternating decision trees
    • Elomaa, T., Mannila, H., Toivonen, H. (Eds.), ECML 2002, doi:10.1007/3-540-36755-1_14
    • Holmes, G., Pfahringer, B., Kirkby, R., Frank, E., and Hall M. (2002). Multiclass alternating decision trees. in: Elomaa, T., Mannila, H., Toivonen, H. (Eds.), ECML 2002, Lecture Notes Comput. Sci., 2430, 161-172. doi:10.1007/3-540-36755-1_14
    • (2002) Lecture Notes Comput. Sci , vol.2430 , pp. 161-172
    • Holmes, G.1    Pfahringer, B.2    Kirkby, R.3    Frank, E.4    Hall, M.5
  • 18
    • 77954376362 scopus 로고    scopus 로고
    • An integrated MM5-CAMx modeling approach for assessing PM10 contribution from different sources in Beijing, China
    • doi:10.3808/jei.201000166
    • Huang, Q., Cheng, S.Y., Li, Y.P., Li, J.B., Chen, D.S., and Wang, H.Y. (2010). An integrated MM5-CAMx modeling approach for assessing PM10 contribution from different sources in Beijing, China, J. Env. Inform., 15(2), 47-61. doi:10.3808/jei.201000166
    • (2010) J. Env. Inform , vol.15 , Issue.2 , pp. 47-61
    • Huang, Q.1    Cheng, S.Y.2    Li, Y.P.3    Li, J.B.4    Chen, D.S.5    Wang, H.Y.6
  • 19
    • 34147159698 scopus 로고    scopus 로고
    • Air pollutant emissions prediction by process modelling - Application in the iron and steel industry in the case of a re-heating furnace
    • doi:10.1016/j.envsoft.2006.09.008
    • Ionescu, A., and Candau, Y. (2007). Air pollutant emissions prediction by process modelling - Application in the iron and steel industry in the case of a re-heating furnace. Environ. Model. Software, 22(9), 1362-1371. doi:10.1016/j.envsoft.2006.09.008
    • (2007) Environ. Model. Software , vol.22 , Issue.9 , pp. 1362-1371
    • Ionescu, A.1    Candau, Y.2
  • 21
    • 44749093365 scopus 로고    scopus 로고
    • An online air pollution forecasting system using neural networks
    • doi:10.1016/j.envint.2007.12.020
    • Kurt, A., Gulbagci, B., Karaca, F., and Alagha, O. (2008). An online air pollution forecasting system using neural networks. Environ. Int., 34(5), 592-598. doi:10.1016/j.envint.2007.12.020
    • (2008) Environ. Int. , vol.34 , Issue.5 , pp. 592-598
    • Kurt, A.1    Gulbagci, B.2    Karaca, F.3    Alagha, O.4
  • 22
    • 21244500957 scopus 로고    scopus 로고
    • Logistic model trees
    • doi:10.1007/s10994-005-0466-3
    • Landwehr, N., Hall, M., Frank, E. (2005). Logistic model trees. Mach. Learning, 59(1-2), 161-205. doi:10.1007/s10994-005-0466-3
    • (2005) Mach. Learning , vol.59 , Issue.1-2 , pp. 161-205
    • Landwehr, N.1    Hall, M.2    Frank, E.3
  • 23
    • 56949108831 scopus 로고    scopus 로고
    • A Bayesian hierarchical model for urban air quality prediction under uncertainty
    • doi:10.1016/j.atomsenv.2008.08.018
    • Liua, Y., Guoa, H., Maob, G., and Yanga, P. (2008). A Bayesian hierarchical model for urban air quality prediction under uncertainty. Atmos. Environ., 42(36), 8464-8469. doi:10.1016/j.atomsenv.2008.08.018
    • (2008) Atmos. Environ. , vol.42 , Issue.36 , pp. 8464-8469
    • Liua, Y.1    Guoa, H.2    Maob, G.3    Yanga, P.4
  • 24
    • 15544389367 scopus 로고    scopus 로고
    • Potential assessment of the support vector machine method in forecasting ambient air pollutant trends
    • doi:10.1016/j.chemosphere.2004.10.032
    • Lu, W.Z., and Wang, W.J. (2005). Potential assessment of the support vector machine method in forecasting ambient air pollutant trends. Chemosphere, 59(5), 693-701. doi:10.1016/j. chemosphere.2004.10.032
    • (2005) Chemosphere , vol.59 , Issue.5 , pp. 693-701
    • Lu, W.Z.1    Wang, W.J.2
  • 25
    • 26844515760 scopus 로고    scopus 로고
    • 2 in Delhi (India)
    • doi:10.1016/j.atmosenv.2005.08.004
    • Pandey, J.S., Kumar, R., and Devotta, S. (2005). Health risks of NO2, SPM and SO2 in Delhi (India). Atmos. Environ., 39(36), 6868-6874. doi:10.1016/j.atmosenv.2005.08.004
    • (2005) Atmos. Environ. , vol.39 , Issue.36 , pp. 6868-6874
    • Pandey, J.S.1    Kumar, R.2    Devotta, S.3
  • 26
    • 34248390876 scopus 로고    scopus 로고
    • Development and assessment of neural network and multiple regression models in order to predict PM10 levels in a medium-sized Mediterranean city
    • doi:10.1007/s11270-007-9341-0
    • Papanastasiou, D.K., Melas D., and Kioutsioukis, I. (2007). Development and assessment of neural network and multiple regression models in order to predict PM10 levels in a medium-sized Mediterranean city, Water, Air, Soil Pollut., 182(1-4), 325-334. doi:10.1007/s11270-007-9341-0
    • (2007) Water, Air, Soil Pollut , vol.182 , Issue.1-4 , pp. 325-334
    • Papanastasiou, D.K.1    Melas, D.2    Kioutsioukis, I.3
  • 28
    • 70449708596 scopus 로고    scopus 로고
    • Predicting air pollution using fuzzy genetic linear membership kriging in GIS
    • doi:10.1016/j.compenvurbsys.2009.10.004
    • Shad, R., Mesgari, M.S., Abkar, A., and Shad, A. (2009). Predicting air pollution using fuzzy genetic linear membership kriging in GIS. Comput., Environ. Urban Syst., 33(6), 472-481. doi:10.1016/j.compenvurbsys.2009.10.004
    • (2009) Comput. Environ. Urban Syst. , vol.33 , Issue.6 , pp. 472-481
    • Shad, R.1    Mesgari, M.S.2    Abkar, A.3    Shad, A.4
  • 29
    • 67349256117 scopus 로고    scopus 로고
    • 2 using dynamic neural networks
    • doi:10.1016/j.compeleceng.008.08.007
    • Shakil, M., Elshafei, M., Habib, M.A., and Maleki, F.A. (2009). Soft sensor for NOx and O2 using dynamic neural networks. Comput. Electrical Eng., 35(4), 578-586. doi:10.1016/j.compeleceng. 008.08.007
    • (2009) Comput. Electrical Eng , vol.35 , Issue.4 , pp. 578-586
    • Shakil, M.1    Elshafei, M.2    Habib, M.A.3    Maleki, F.A.4
  • 30
    • 61649104926 scopus 로고    scopus 로고
    • MSc Thesis, University of Waikato, Hamilton, NZ
    • Shi, H. (2007). Best-first decision tree learning. MSc Thesis, University of Waikato, Hamilton, NZ.
    • (2007) Best-first decision tree learning
    • Shi, H.1
  • 34
    • 43049157582 scopus 로고    scopus 로고
    • Comparison of decision tree methods for finding active objects
    • doi:10.1016/j.asr.2007.07.020
    • Zhao, Y., and Zhang, Y. (2008). Comparison of decision tree methods for finding active objects, Adv. Space Res., 41(12), 1955-1959. doi:10.1016/j.asr.2007.07.020
    • (2008) Adv. Space Res , vol.41 , Issue.12 , pp. 1955-1959
    • Zhao, Y.1    Zhang, Y.2
  • 35
    • 33846112216 scopus 로고    scopus 로고
    • Adaptive neural network control of uncertain nonlinear systems with nonsmooth actuator nonlinearities
    • doi:10.1016/j.neucom.2006.09.009
    • Zhou, J., Er M.J., and Zurada, J.M. (2007). Adaptive neural network control of uncertain nonlinear systems with nonsmooth actuator nonlinearities. Neurocomputing, 70(), 1062-1070. doi:10.1016/j.neucom.2006.09.009
    • (2007) Neurocomputing , vol.70 , Issue.4-6 , pp. 1062-1070
    • Zhou, J.1    Er, M.J.2    Zurada, J.M.3
  • 36
    • 0348231950 scopus 로고    scopus 로고
    • Development of an intelligent decision support system for air pollution control at coal-fired power plants
    • doi:10.1016/j.eswa.2003.09.005
    • Zhou, Q., Huang, G.H., and Chan, C.W. (2004). Development of an intelligent decision support system for air pollution control at coal-fired power plants. Expert Syst. Appl., 26(3), 335-356. doi:10.1016/j.eswa.2003.09.005
    • (2004) Expert Syst. Appl , vol.26 , Issue.3 , pp. 335-356
    • Zhou, Q.1    Huang, G.H.2    Chan, C.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.