메뉴 건너뛰기




Volumn 66, Issue 12, 2011, Pages 2646-2659

Computer simulation of gas generation and transport in landfills. V: Use of artificial neural network and the genetic algorithm for short- and long-term forecasting and planning

Author keywords

Artificial neural networks; Forecasting; Genetic algorithm; Landfills; Methane; Predictions

Indexed keywords

ACCURATE PREDICTION; ARTIFICIAL NEURAL NETWORK; CONCENTRATION PROFILES; EXPERIMENTAL DATA; GAS GENERATION; GASEOUS MIXTURE; LONG-TERM FORECASTING; LONG-TERM PREDICTION; OPTIMIZATION TECHNIQUES; PREDICTIONS; SHORT TERM PREDICTION; SOUTHERN CALIFORNIA; THREE-DIMENSIONAL MODEL; TORTUOSITY FACTOR;

EID: 79955013153     PISSN: 00092509     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ces.2011.03.013     Document Type: Article
Times cited : (35)

References (22)
  • 1
    • 0027790610 scopus 로고
    • Using artificial neural nets to identify the well test interpretation model
    • September
    • Al-Kaabi A.U., Lee W.J. Using artificial neural nets to identify the well test interpretation model. SPE Formation Evaluation 1993, (September):233.
    • (1993) SPE Formation Evaluation , pp. 233
    • Al-Kaabi, A.U.1    Lee, W.J.2
  • 2
    • 15944366613 scopus 로고    scopus 로고
    • Modular neural networks to predict the nitrate distribution in groundwater using the on-ground nitrogen loading and recharge data
    • Almasri M.N., Kaluarachchi J.J. Modular neural networks to predict the nitrate distribution in groundwater using the on-ground nitrogen loading and recharge data. Environmental Modeling & Software 2005, 20:851.
    • (2005) Environmental Modeling & Software , vol.20 , pp. 851
    • Almasri, M.N.1    Kaluarachchi, J.J.2
  • 8
  • 9
    • 0037135350 scopus 로고    scopus 로고
    • Computer simulation of gas generation and transport in landfills-I: quasi-steady-state condition
    • Hashemi M., Kavak H.I., Tsotsis T.T., Sahimi M. Computer simulation of gas generation and transport in landfills-I: quasi-steady-state condition. Chemical Engineering Science 2002, 54:2475.
    • (2002) Chemical Engineering Science , vol.54 , pp. 2475
    • Hashemi, M.1    Kavak, H.I.2    Tsotsis, T.T.3    Sahimi, M.4
  • 11
    • 33646346099 scopus 로고    scopus 로고
    • NN-LEAP: a neural network-based model for controlling leachate flow-rate in a municipal solid waste landfill site
    • Karaca F., Özkaya B. NN-LEAP: a neural network-based model for controlling leachate flow-rate in a municipal solid waste landfill site. Environmental Modeling & Software 2007, 21:1190.
    • (2007) Environmental Modeling & Software , vol.21 , pp. 1190
    • Karaca, F.1    Özkaya, B.2
  • 12
    • 62149129992 scopus 로고    scopus 로고
    • Development of surrogate reservoir model (SRM) for fast track analysis of a complex reservoir
    • Mohaghegh S.D. Development of surrogate reservoir model (SRM) for fast track analysis of a complex reservoir. International Journal of Oil, Gas and Coal Technology 2009, 2:2.
    • (2009) International Journal of Oil, Gas and Coal Technology , vol.2 , pp. 2
    • Mohaghegh, S.D.1
  • 13
    • 67649996940 scopus 로고    scopus 로고
    • An intelligent system's approach for revitalization of brown fields using only production rate data
    • Mohaghegh S.D. An intelligent system's approach for revitalization of brown fields using only production rate data. International Journal of Engineering 2009, 22:89.
    • (2009) International Journal of Engineering , vol.22 , pp. 89
    • Mohaghegh, S.D.1
  • 14
    • 33846617393 scopus 로고    scopus 로고
    • Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors
    • Özkaya B., Demir A., Bilgili M.S. Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors. Environmental Modeling & Software 2007, 22:815.
    • (2007) Environmental Modeling & Software , vol.22 , pp. 815
    • Özkaya, B.1    Demir, A.2    Bilgili, M.S.3
  • 15
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • MIT Press, Cambridge
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning internal representations by error propagation. Parallel Data Processing 1986, vol. 1:318. MIT Press, Cambridge.
    • (1986) Parallel Data Processing , vol.1 , pp. 318
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 17
    • 33747222990 scopus 로고    scopus 로고
    • Computer simulation of gas generation and transport in landfills. II: dynamic conditions
    • Sanchez R., Hashemi M., Tsotsis T.T., Sahimi M. Computer simulation of gas generation and transport in landfills. II: dynamic conditions. Chemical Engineering Science 2006, 61:4750.
    • (2006) Chemical Engineering Science , vol.61 , pp. 4750
    • Sanchez, R.1    Hashemi, M.2    Tsotsis, T.T.3    Sahimi, M.4
  • 18
    • 34848875706 scopus 로고    scopus 로고
    • Computer simulation of gas generation and transport in landfiils. III: development of landfills' optimal model
    • Sanchez R., Tsotsis T.T., Sahimi M. Computer simulation of gas generation and transport in landfiils. III: development of landfills' optimal model. Chemical Engineering Science 2007, 62:6378.
    • (2007) Chemical Engineering Science , vol.62 , pp. 6378
    • Sanchez, R.1    Tsotsis, T.T.2    Sahimi, M.3
  • 19
    • 71549123399 scopus 로고    scopus 로고
    • Computer simulation of gas generation and transport in landfills. IV: modeling of two-phase flow
    • Sanchez R., Tsotsis T.T., Sahimi M. Computer simulation of gas generation and transport in landfills. IV: modeling of two-phase flow. Chemical Engineering Science 2010, 65:1212.
    • (2010) Chemical Engineering Science , vol.65 , pp. 1212
    • Sanchez, R.1    Tsotsis, T.T.2    Sahimi, M.3
  • 20
    • 77950351219 scopus 로고    scopus 로고
    • Non-invasive methods applied to the case of municipal solid waste landfills (MSW): analysis of long-term data
    • Scozzari A. Non-invasive methods applied to the case of municipal solid waste landfills (MSW): analysis of long-term data. Advanced Geoscience 2008, 19:33.
    • (2008) Advanced Geoscience , vol.19 , pp. 33
    • Scozzari, A.1
  • 21
    • 79955039115 scopus 로고    scopus 로고
    • Forecasting groundwater contamination using artificial neural networks. In: International Conference in Water Resource and Arid Environments
    • Shamim, M.A., Ghumman, A.R., Ghani, U., 2004. Forecasting groundwater contamination using artificial neural networks. In: International Conference in Water Resource and Arid Environments.
    • (2004)
    • Shamim, M.A.1    Ghumman, A.R.2    Ghani, U.3
  • 22
    • 33947708401 scopus 로고    scopus 로고
    • Artificial neural networks for modeling for identification of unknown pollution sources in groundwater with partially missing concentration observation data
    • Singh R.M., Datta B. Artificial neural networks for modeling for identification of unknown pollution sources in groundwater with partially missing concentration observation data. Waste Resources Management 2007, 21:557.
    • (2007) Waste Resources Management , vol.21 , pp. 557
    • Singh, R.M.1    Datta, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.