메뉴 건너뛰기




Volumn 58, Issue 5, 2011, Pages 2019-2029

Self-organizing polynomial networks for time-constrained applications

Author keywords

Approximation methods; embedded systems; group method of data handling (GMDH); modeling; real time (RT) systems

Indexed keywords

APPROXIMATION ERRORS; APPROXIMATION METHODS; ARTIFICIAL NEURAL NETWORK; CALCULATION PROCEDURE; ERROR MEASURES; EXECUTION SPEED; EXECUTION TIME; GROUP METHOD OF DATA HANDLING; LOW-COMPLEXITY; MEASUREMENT SYSTEM; METAMODELING; MINIMUM DESCRIPTION LENGTH; MODELING; PARAMETER ERROR; POLYNOMIAL NETWORKS; RATE MEASUREMENTS; REAL-TIME (RT) SYSTEMS; SELF ORGANIZING; STATIC SYSTEMS; SUPPORT VECTOR REGRESSIONS; SURROGATE MODEL;

EID: 79954476483     PISSN: 02780046     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIE.2010.2051934     Document Type: Article
Times cited : (6)

References (33)
  • 1
    • 85087593246 scopus 로고    scopus 로고
    • Comparative studies of metamodeling techniques under multiple modeling criteria
    • Long Beach, CA,Sep. 6-8,Paper AIAA- 2000-4801
    • R. Jin, W. Chen, and T. W. Simpson, "Comparative studies of metamodeling techniques under multiple modeling criteria," presented at the 8th AIAA/USAF/NASA/ISSMO Symp. Multidisciplinary Analysis Optimization, Long Beach, CA, Sep. 6-8, 2000, Paper AIAA-2000-4801.
    • (2000) 8th AIAA/USAF/NASA/ISSMO Symp. Multidisciplinary Analysis Optimization
    • Jin, R.1    Chen, W.2    Simpson, T.W.3
  • 3
    • 13844255524 scopus 로고    scopus 로고
    • Smooth function approximation using neural networks
    • DOI 10.1109/TNN.2004.836233
    • S. Ferrari and R. F. Stengel, "Smooth function approximation using neural networks," IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 24-38, Jan. 2005. (Pubitemid 40241908)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.1 , pp. 24-38
    • Ferrari, S.1    Stengel, R.F.2
  • 4
    • 54249093329 scopus 로고    scopus 로고
    • Computing gradient vector and Jacobian matrix in arbitrarily connected neural networks
    • Oct.
    • B. M. Wilamowski, N. J. Cotton, O. Kaynak, and G. Dündar, "Computing gradient vector and Jacobian matrix in arbitrarily connected neural networks," IEEE Trans. Ind. Electron., vol. 55, no. 10, pp. 3784-3790, Oct. 2008.
    • (2008) IEEE Trans. Ind. Electron. , vol.55 , Issue.10 , pp. 3784-3790
    • Wilamowski, B.M.1    Cotton, N.J.2    Kaynak, O.3    Dündar, G.4
  • 5
    • 43949118327 scopus 로고    scopus 로고
    • Model-based real-time dynamic power factor measurement in ac resistance spot welding with an embedded ANN
    • Jun.
    • L. Gong, C. L. Liu, and X. F. Zha, "Model-based real-time dynamic power factor measurement in ac resistance spot welding with an embedded ANN," IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1442-1448, Jun. 2007.
    • (2007) IEEE Trans. Ind. Electron. , vol.54 , Issue.3 , pp. 1442-1448
    • Gong, L.1    Liu, C.L.2    Zha, X.F.3
  • 6
    • 33947385783 scopus 로고    scopus 로고
    • Hardware implementation of a real-time neural network controller with a DSP and an FPGA for nonlinear systems
    • DOI 10.1109/TIE.2006.888791
    • S. Jung and S. S. Kim, "Hardware implementation of a real-time neural network controller with a DSP and an FPGA for nonlinear systems," IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 265-271, Feb. 2007. (Pubitemid 46444024)
    • (2007) IEEE Transactions on Industrial Electronics , vol.54 , Issue.1 , pp. 265-271
    • Jung, S.1    Kim, S.S.2
  • 7
    • 77956506107 scopus 로고    scopus 로고
    • Modeling of a PEM fuel-cell stack for dynamic and steady-state operation using ANN-based submodels
    • Dec.
    • X. Kong and A.M. Khambadkone, "Modeling of a PEM fuel-cell stack for dynamic and steady-state operation using ANN-based submodels," IEEE Trans. Ind. Electron., vol. 56, no. 12, pp. 4903-4914, Dec. 2009.
    • (2009) IEEE Trans. Ind. Electron. , vol.56 , Issue.12 , pp. 4903-4914
    • Kong, X.1    Khambadkone, A.M.2
  • 8
    • 25144486629 scopus 로고    scopus 로고
    • Analysis of support vector regression for approximation of complex engineering analyses
    • DOI 10.1115/1.1897403
    • S. M. Clarke, J. H. Griebsch, and T. W. Simpson, "Analysis of support vector regression for approximation of complex engineering analyses," J. Mech. Des., vol. 127, no. 6, pp. 1077-1087, Nov. 2005. (Pubitemid 41709565)
    • (2005) Journal of Mechanical Design, Transactions of the ASME , vol.127 , Issue.6 , pp. 1077-1087
    • Clarke, S.M.1    Griebsch, J.H.2    Simpson, T.W.3
  • 9
    • 0015142058 scopus 로고
    • Polynomial theory of complex systems
    • Oct.
    • A. G. Ivakhnenko, "Polynomial theory of complex systems," IEEE Trans. Syst., Man, Cybern., vol. SMC-1, no. 4, pp. 364-378, Oct. 1971.
    • (1971) IEEE Trans. Syst., Man, Cybern. , vol.SMC-1 , Issue.4 , pp. 364-378
    • Ivakhnenko, A.G.1
  • 10
    • 0037361327 scopus 로고    scopus 로고
    • Learning polynomial feedforward neural networks by genetic programming and backpropagation
    • Mar.
    • N. Y. Nikolaev and H. Iba, "Learning polynomial feedforward neural networks by genetic programming and backpropagation," IEEE Trans. Neural Netw., vol. 14, no. 2, pp. 337-350, Mar. 2003.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.2 , pp. 337-350
    • Nikolaev, N.Y.1    Iba, H.2
  • 11
    • 63549111632 scopus 로고    scopus 로고
    • Revised GMDH-type neural network algorithm with a feedback loop identifying sigmoid function neural network
    • Oct.
    • T. Kondo and J. Ueno, "Revised GMDH-type neural network algorithm with a feedback loop identifying sigmoid function neural network," Int. J. Innovative Comput., Inf. Control, vol. 2, no. 5, pp. 985-996, Oct. 2006.
    • (2006) Int. J. Innovative Comput., Inf. Control , vol.2 , Issue.5 , pp. 985-996
    • Kondo, T.1    Ueno, J.2
  • 12
    • 0346686159 scopus 로고    scopus 로고
    • GMDH-based modeling and feedforward compensation for nonlinear friction in table drive systems
    • Dec.
    • M. Iwasaki, H. Takei, and N. Matsui, "GMDH-based modeling and feedforward compensation for nonlinear friction in table drive systems," IEEE Trans. Ind. Electron., vol. 50, no. 6, pp. 1172-1178, Dec. 2003.
    • (2003) IEEE Trans. Ind. Electron. , vol.50 , Issue.6 , pp. 1172-1178
    • Iwasaki, M.1    Takei, H.2    Matsui, N.3
  • 14
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Sep.
    • J. Rissanen, "Modeling by shortest data description," Automatica, vol. 14, no. 5, pp. 465-471, Sep. 1978.
    • (1978) Automatica , vol.14 , Issue.5 , pp. 465-471
    • Rissanen, J.1
  • 16
    • 0025399568 scopus 로고
    • Self-organizing network for optimum supervised learning
    • Mar.
    • M. F. Tenorio and W. T. Lee, "Self-organizing network for optimum supervised learning," IEEE Trans. Neural Netw., vol. 1, no. 1, pp. 100- 110, Mar. 1990.
    • (1990) IEEE Trans. Neural Netw. , vol.1 , Issue.1 , pp. 100-110
    • Tenorio, M.F.1    Lee, W.T.2
  • 17
    • 33847159205 scopus 로고    scopus 로고
    • A procedure for the calculation of the natural gas molar heat capacity, the isentropic exponent, and the Joule-Thomson coefficient
    • DOI 10.1016/j.flowmeasinst.2006.12.001, PII S0955598607000027
    • I. Maríc, "A procedure for the calculation of the natural gas molar heat capacity, the isentropic exponent, and the Joule-Thomson coefficient," Flow Meas. Instrum., vol. 18, no. 1, pp. 18-26, Mar. 2007. (Pubitemid 46277437)
    • (2007) Flow Measurement and Instrumentation , vol.18 , Issue.1 , pp. 18-26
    • Maric, I.1
  • 18
    • 79954525986 scopus 로고    scopus 로고
    • Speed of sound and related thermodynamic properties calculated from the AGA report no. 8 detail characterization method using a Helmholtz energy formulation
    • Orlando, FL,Apr. 28
    • E. W. Lemmon and K. Starling, "Speed of sound and related thermodynamic properties calculated from the AGA report no. 8 detail characterization method using a Helmholtz energy formulation," in Proc. Amer. Gas Assoc. Conf. Biennial Exhib., Orlando, FL, Apr. 28, 2003.
    • (2003) Proc. Amer. Gas Assoc. Conf. Biennial Exhib.
    • Lemmon, E.W.1    Starling, K.2
  • 21
    • 79954493236 scopus 로고    scopus 로고
    • Orifice metering of natural gas and other related hydrocarbon fluids-part 1: General equations and uncertainty guidelines
    • Orifice Metering of Natural Gas and Other Related Hydrocarbon Fluids-Part 1: General Equations and Uncertainty Guidelines, AGA Report No. 3, 2003.
    • (2003) AGA Report No. 3
  • 22
    • 27744437960 scopus 로고
    • Compressibility factor of natural gas and related hydrocarbon gases
    • Compressibility Factor of Natural Gas and Related Hydrocarbon Gases, AGA Report No. 8, 1994.
    • (1994) AGA Report No. 8
  • 29
    • 0000263906 scopus 로고    scopus 로고
    • Fast approximation of support vector kernel expansions, and an interpretation of clustering as approximation in feature spaces
    • Berlin, Germany: Springer- Verlag
    • B. Schölkopf, P. Knirsch, A. Smola, and C. Burges, "Fast approximation of support vector kernel expansions, and an interpretation of clustering as approximation in feature spaces," in Mustererkennung 1998. Berlin, Germany: Springer-Verlag, 1998, pp. 124-132.
    • (1998) Mustererkennung 1998 , pp. 124-132
    • Schölkopf, B.1    Knirsch, P.2    Smola, A.3    Burges, C.4
  • 33
    • 73449111308 scopus 로고    scopus 로고
    • Neural network architectures and learning algorithms
    • Dec.
    • B. M. Wilamowski, "Neural network architectures and learning algorithms," IEEE Ind. Electron. Mag., vol. 3, no. 4, pp. 56-63, Dec. 2009.
    • (2009) IEEE Ind. Electron. Mag. , vol.3 , Issue.4 , pp. 56-63
    • Wilamowski, B.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.