메뉴 건너뛰기




Volumn 35, Issue 4, 2011, Pages 333-343

Automatic recognition of five types of white blood cells in peripheral blood

Author keywords

Classification; Feature selection; Gram Schmidt orthogonalization; Peripheral blood; Segmentation; Texture feature; White blood cell

Indexed keywords

CLASSIFICATION; FEATURE SELECTION; GRAM-SCHMIDT ORTHOGONALIZATION; PERIPHERAL BLOOD; SEGMENTATION; TEXTURE FEATURE; WHITE BLOOD CELL;

EID: 79953749339     PISSN: 08956111     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compmedimag.2011.01.003     Document Type: Article
Times cited : (314)

References (25)
  • 3
    • 0037277964 scopus 로고    scopus 로고
    • Automated detection of working area of peripheral blood smears using mathematical morphology
    • Angulo J., Flandrin G. Automated detection of working area of peripheral blood smears using mathematical morphology. Anal Cell Pathol 2003, 25:37-49.
    • (2003) Anal Cell Pathol , vol.25 , pp. 37-49
    • Angulo, J.1    Flandrin, G.2
  • 5
    • 0036034089 scopus 로고    scopus 로고
    • Analysis of blood and bone marrow smears using digital image processing techniques
    • Hengen H., Spoor S.L., Pandit M.C. Analysis of blood and bone marrow smears using digital image processing techniques. Medical Imaging 2002, 624-635.
    • (2002) Medical Imaging , pp. 624-635
    • Hengen, H.1    Spoor, S.L.2    Pandit, M.C.3
  • 6
    • 66749168061 scopus 로고    scopus 로고
    • Patch-based white blood cell nucleus segmentation using fuzzy clustering
    • Umpon N.T. Patch-based white blood cell nucleus segmentation using fuzzy clustering. ECTI Trans Electr Eng Electr Commun 2005, 3:5-10.
    • (2005) ECTI Trans Electr Eng Electr Commun , vol.3 , pp. 5-10
    • Umpon, N.T.1
  • 7
    • 33750067969 scopus 로고    scopus 로고
    • A method based on multi-spectral imaging technique for white blood cell segmentation
    • Guo N., Zeng L., Wu Q. A method based on multi-spectral imaging technique for white blood cell segmentation. Comput Biol Med 2006, 37:70-76.
    • (2006) Comput Biol Med , vol.37 , pp. 70-76
    • Guo, N.1    Zeng, L.2    Wu, Q.3
  • 8
    • 0021522236 scopus 로고
    • An iterative segmentation method based on contextual color and shape criterion
    • Chassery J.M., Garbay C. An iterative segmentation method based on contextual color and shape criterion. IEEE Trans Pattern Anal Mach Intell 1984, 6:795-800.
    • (1984) IEEE Trans Pattern Anal Mach Intell , vol.6 , pp. 795-800
    • Chassery, J.M.1    Garbay, C.2
  • 11
    • 34248575676 scopus 로고    scopus 로고
    • Morphological granulometric features of nucleus in automatic bone marrow white blood cell classification
    • Umpon N.T., Dhompongsa S. Morphological granulometric features of nucleus in automatic bone marrow white blood cell classification. IEEE Trans Inf Technol Biomed 2007, 11:353-359.
    • (2007) IEEE Trans Inf Technol Biomed , vol.11 , pp. 353-359
    • Umpon, N.T.1    Dhompongsa, S.2
  • 12
    • 0030271485 scopus 로고    scopus 로고
    • Morphological feature extraction for the classification of digital images of cancerous tissues
    • Thiran J.P., Macq B. Morphological feature extraction for the classification of digital images of cancerous tissues. IEEE Trans BioMed Eng 1996, 43:1011-1020.
    • (1996) IEEE Trans BioMed Eng , vol.43 , pp. 1011-1020
    • Thiran, J.P.1    Macq, B.2
  • 13
    • 34250856799 scopus 로고    scopus 로고
    • An image analysis approach for automatic malignancy determination of prostate pathological images
    • Farjam R., Soltanian-Zadeh H., Jafari-Khouzani K., Zoroofi R.A. An image analysis approach for automatic malignancy determination of prostate pathological images. Cytometry B Clin Cytom 2007, 72:227-240.
    • (2007) Cytometry B Clin Cytom , vol.72 , pp. 227-240
    • Farjam, R.1    Soltanian-Zadeh, H.2    Jafari-Khouzani, K.3    Zoroofi, R.A.4
  • 14
    • 0036464306 scopus 로고    scopus 로고
    • System-level training of neural networks for counting white blood cells
    • Umpon N.T., Gader P.D. System-level training of neural networks for counting white blood cells. IEEE Trans Syst Man Cybern 2002, 32:48-53.
    • (2002) IEEE Trans Syst Man Cybern , vol.32 , pp. 48-53
    • Umpon, N.T.1    Gader, P.D.2
  • 16
    • 0035354249 scopus 로고    scopus 로고
    • A neural classifier enabling high-throughput topological analysis of lymphocytes in tissue sections
    • Nattkemper T.W., Ritter H.J., Schubert W. A neural classifier enabling high-throughput topological analysis of lymphocytes in tissue sections. IEEE Trans Inf Technol Biomed 2001, 5:138-149.
    • (2001) IEEE Trans Inf Technol Biomed , vol.5 , pp. 138-149
    • Nattkemper, T.W.1    Ritter, H.J.2    Schubert, W.3
  • 17
    • 30844461488 scopus 로고    scopus 로고
    • A new detection algorithm (NDA) based on fuzzy cellular neural networks for white blood cell detection
    • Shitong W., Min W. A new detection algorithm (NDA) based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inf Technol Biomed 2006, 10:5-10.
    • (2006) IEEE Trans Inf Technol Biomed , vol.10 , pp. 5-10
    • Shitong, W.1    Min, W.2
  • 21
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • Ojala T., Pietikainen M., Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 2002, 24:971-987.
    • (2002) IEEE Trans Pattern Anal Mach Intell , vol.24 , pp. 971-987
    • Ojala, T.1    Pietikainen, M.2    Maenpaa, T.3
  • 23
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: fundamentals, computing, design, and application
    • Basheer I.A., Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Meth 2000, 43:3-31.
    • (2000) J Microbiol Meth , vol.43 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 24
    • 0142088847 scopus 로고    scopus 로고
    • Texture classification using the support vector machines
    • Li S., Kwoka J.T., Zhu H., Wang Y. Texture classification using the support vector machines. Pattern Recogn 2003, 36:2883-2893.
    • (2003) Pattern Recogn , vol.36 , pp. 2883-2893
    • Li, S.1    Kwoka, J.T.2    Zhu, H.3    Wang, Y.4
  • 25
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 1998, 2:121-167.
    • (1998) Data Min Knowl Disc , vol.2 , pp. 121-167
    • Burges, C.J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.