메뉴 건너뛰기




Volumn 181, Issue 11, 2011, Pages 2293-2302

Enhanced clustering of biomedical documents using ensemble non-negative matrix factorization

Author keywords

Biomedical document clustering; Ensemble clustering; Non negative matrix factorization

Indexed keywords

BIOMEDICAL LITERATURE; BIPARTITE GRAPHS; CLUSTERING RESULTS; DATA SETS; DOCUMENT CLUSTERING; ENSEMBLE ALGORITHMS; ENSEMBLE CLUSTERING; GENOMICS; GRAPH-BASED; HIER-ARCHICAL CLUSTERING; INITIAL VALUES; K-MEANS; NONNEGATIVE MATRIX FACTORIZATION; TEXT DOCUMENT;

EID: 79953288612     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2011.01.029     Document Type: Article
Times cited : (44)

References (36)
  • 1
    • 65549104397 scopus 로고    scopus 로고
    • A roadmap of clustering algorithms: Finding a match for a biomedical application
    • B. Andreopoulos, A. An, C. Wang, and M. Schroeder A roadmap of clustering algorithms: finding a match for a biomedical application Briefings Bioinf. 10 1 2009 297 314
    • (2009) Briefings Bioinf. , vol.10 , Issue.1 , pp. 297-314
    • Andreopoulos, B.1    An, A.2    Wang, C.3    Schroeder, M.4
  • 2
    • 33644638865 scopus 로고    scopus 로고
    • Discovering semantic features in the literature: A foundation for building functional associations
    • M. Chagoyen, P. Carmona-Saez, H. Shatkay, J.M. Carazo, and A. Pascual-Montano Discovering semantic features in the literature: a foundation for building functional associations BMC Bioinf. 7 2006 41
    • (2006) BMC Bioinf. , vol.7 , pp. 41
    • Chagoyen, M.1    Carmona-Saez, P.2    Shatkay, H.3    Carazo, J.M.4    Pascual-Montano, A.5
  • 3
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A.P. Dempster, N.M. Laird, and R.B. Rubin Maximum likelihood from incomplete data via the EM algorithm J. Roy. Stat. Soc. 39 1977 1 38
    • (1977) J. Roy. Stat. Soc. , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, R.B.3
  • 4
    • 48249151183 scopus 로고    scopus 로고
    • Nonnegative matrix factorization: An analytical and interpretive tool in computational biology
    • K. Devarajan Nonnegative matrix factorization: an analytical and interpretive tool in computational biology PLoS Comput. Biol. 4 2008 e1000029
    • (2008) PLoS Comput. Biol. , vol.4 , pp. 1000029
    • Devarajan, K.1
  • 7
    • 0038391443 scopus 로고    scopus 로고
    • Bagging to improve the accuracy of a clustering procedure
    • DOI 10.1093/bioinformatics/btg038
    • S. Dudoit, and J. Fridlyand Bagging to improve the accuracy of a clustering procedure Bioinformatics 19 2003 1090 1099 (Pubitemid 36790010)
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1090-1099
    • Dudoit, S.1    Fridlyand, J.2
  • 9
    • 33845903308 scopus 로고    scopus 로고
    • Inferential, robust non-negative matrix factorization analysis of microarray data
    • DOI 10.1093/bioinformatics/btl550
    • P. Fogel, S.S. Young, D.M. Hawkins, and N. Ledirac Inferential, robust non-negative matrix factorization analysis of microarray data Bioinformatics 23 2007 44 49 (Pubitemid 46017854)
    • (2007) Bioinformatics , vol.23 , Issue.1 , pp. 44-49
    • Fogel, P.1    Young, S.S.2    Hawkins, D.M.3    Ledirac, N.4
  • 10
    • 2542613410 scopus 로고    scopus 로고
    • Scalable clustering methods for data mining
    • J. Ghosh Scalable clustering methods for data mining N. Ye, The Handbook of Data Mining 2003 Lawrence Erlbaum Associates, Publishers Mahwah, N.J.
    • (2003) The Handbook of Data Mining
    • Ghosh, J.1
  • 11
    • 48249087654 scopus 로고    scopus 로고
    • Ensemble non-negative matrix factorization methods for clustering protein-protein interactions
    • D. Greene, G. Cagney, N. Krogan, and P. Cunningham Ensemble non-negative matrix factorization methods for clustering protein-protein interactions Bioinformatics 24 2008 1722 1728
    • (2008) Bioinformatics , vol.24 , pp. 1722-1728
    • Greene, D.1    Cagney, G.2    Krogan, N.3    Cunningham, P.4
  • 12
    • 0001138328 scopus 로고
    • A K-Means clustering algorithm
    • J.A. Hartigan, and M.A. Wong A K-Means clustering algorithm Appl. Stat. 28 1979 100 108
    • (1979) Appl. Stat. , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 13
    • 1642445486 scopus 로고    scopus 로고
    • Sensitive pattern discovery with 'fuzzy' alignments of distantly related proteins
    • A. Heger, and L. Holm Sensitive pattern discovery with 'fuzzy' alignments of distantly related proteins Bioinformatics 19 2003 i130-137, Supplement 1
    • (2003) Bioinformatics , vol.19
    • Heger, A.1    Holm, L.2
  • 15
    • 31144432293 scopus 로고    scopus 로고
    • Literature mining for the biologist: From information retrieval to biological discovery
    • DOI 10.1038/nrg1768, PII NRG1768
    • L.J. Jensen, J. Saric, and P. Bork Literature mining for the biologist: from information retrieval to biological discovery Nat. Rev. Genet. 7 2006 119 129 (Pubitemid 43128897)
    • (2006) Nature Reviews Genetics , vol.7 , Issue.2 , pp. 119-129
    • Jensen, L.J.1    Saric, J.2    Bork, P.3
  • 16
    • 0032131147 scopus 로고    scopus 로고
    • A fast and high quality multilevel scheme for partitioning irregular graphs
    • PII S1064827595287997
    • G. Karypis, and V. Kumar A fast and high quality multilevel scheme for partitioning irregular graphs SIAM J. Sci. Comput. 20 1998 359 392 (Pubitemid 128689516)
    • (1998) SIAM Journal of Scientific Computing , vol.20 , Issue.1 , pp. 359-392
    • Karypis, G.1    Kumar, V.2
  • 17
    • 0037810449 scopus 로고    scopus 로고
    • Subsystem identification through dimensionality reduction of large-scale gene expression data
    • DOI 10.1101/gr.903503
    • P.M. Kim, and B. Tidor Subsystem identification through dimensionality reduction of large-scale gene expression data Gen. Res. 13 2003 1706 1718 (Pubitemid 36874488)
    • (2003) Genome Research , vol.13 , Issue.7 , pp. 1706-1718
    • Kim, P.M.1    Tidor, B.2
  • 18
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D.D. Lee, and H.S. Seung Learning the parts of objects by non-negative matrix factorization Nature 401 1999 788 791
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 19
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D.D. Lee, and H.S. Seung Algorithms for non-negative matrix factorization T.K. Leen, T.G. Dietterich, V. Tresp, Advances in Neural Information Processing Systems vol. 13 2001 MIT Press 556 562
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 20
    • 33744799046 scopus 로고    scopus 로고
    • Exploring supervised and unsupervised methods to detect topics in biomedical text
    • M. Lee, W. Wang, and H. Yu Exploring supervised and unsupervised methods to detect topics in biomedical text BMC Bioinf. 7 2006 140
    • (2006) BMC Bioinf. , vol.7 , pp. 140
    • Lee, M.1    Wang, W.2    Yu, H.3
  • 21
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for non-negative matrix factorization
    • C.J. Lin Projected gradient methods for non-negative matrix factorization Neural Comput. 19 2007 2756 2779
    • (2007) Neural Comput. , vol.19 , pp. 2756-2779
    • Lin, C.J.1
  • 22
    • 25444482341 scopus 로고    scopus 로고
    • Theme discovery from gene lists for identification and viewing of multiple functional groups
    • P. Pehkonen, G. Wong, and P. Toronen Theme discovery from gene lists for identification and viewing of multiple functional groups BMC Bioinf. 6 2005 162
    • (2005) BMC Bioinf. , vol.6 , pp. 162
    • Pehkonen, P.1    Wong, G.2    Toronen, P.3
  • 23
    • 0016572913 scopus 로고
    • A vector space model for automatic indexing
    • G. Salton, A. Wong, and C.S. Yang A vector space model for automatic indexing Commun. ACM 18 1975 613 620
    • (1975) Commun. ACM , vol.18 , pp. 613-620
    • Salton, G.1    Wong, A.2    Yang, C.S.3
  • 25
    • 79953288803 scopus 로고    scopus 로고
    • Ensemble document clustering using weighted hypergraph generated by NMF
    • H. Shinnou, M. Sasaki, Ensemble document clustering using weighted hypergraph generated by NMF, in: The Proceedings of the ACL 2007, pp. 77-80.
    • (2007) The Proceedings of the ACL , pp. 77-80
    • Shinnou, H.1    Sasaki, M.2
  • 26
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • A. Strehl, and J. Ghosh Cluster ensembles - a knowledge reuse framework for combining multiple partitions J. Mach. Learn. Res. 3 2002 583 617
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 29
    • 55949137146 scopus 로고    scopus 로고
    • Clustering complex networks and biological networks by nonnegative matrix factorization with various similarity measures
    • R.S. Wang, S.H. Zhang, Y. Wang, X.S. Zhang, and L. Chen Clustering complex networks and biological networks by nonnegative matrix factorization with various similarity measures Neurocomputing 72 2008 134 141
    • (2008) Neurocomputing , vol.72 , pp. 134-141
    • Wang, R.S.1    Zhang, S.H.2    Wang, Y.3    Zhang, X.S.4    Chen, L.5
  • 32
    • 34247201591 scopus 로고    scopus 로고
    • A comprehensive comparison study of document clustering for a biomedical digital library MEDLINE
    • DOI 10.1145/1141753.1141802, 6th ACM/IEEE-CS Joint Conference on Digital Libraries 2006: Opening Information Horizons, JCDL '06
    • I. Yoo, and X.H. Hu A comprehensive comparison study of document clustering for a biomedical digital library MEDLINE G. Marchionini, M.L. Nelson, C.C. Marshall, ACM/IEEE Joint Conference on Digital Libraries JCDL 2006 2006 ACM 220 229 (Pubitemid 46609261)
    • (2006) Proceedings of the ACM/IEEE Joint Conference on Digital Libraries , vol.2006 , pp. 220-229
    • Yoo, I.1    Hu, X.2
  • 33
    • 64549105240 scopus 로고    scopus 로고
    • Exploiting noun phrases and semantic relationships for text document clustering
    • H.T. Zheng, B.Y. Kang, and H.G. Kim Exploiting noun phrases and semantic relationships for text document clustering Inform. Sci. 179 13 2009 2249 2262
    • (2009) Inform. Sci. , vol.179 , Issue.13 , pp. 2249-2262
    • Zheng, H.T.1    Kang, B.Y.2    Kim, H.G.3
  • 34
    • 2142687208 scopus 로고    scopus 로고
    • A unified framework for model-based clustering
    • S. Zhong, and J. Ghosh A unified framework for model-based clustering J. Mach. Learn. Res. 4 2003 1001 1037
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 1001-1037
    • Zhong, S.1    Ghosh, J.2
  • 35
    • 24944501423 scopus 로고    scopus 로고
    • Generative model-based document clustering: A comparative study
    • DOI 10.1007/s10115-004-0194-1
    • S. Zhong, and J. Ghosh Generative model-based document clustering: a comparative study Knowl. Inform. Syst. 8 2005 374 384 (Pubitemid 41300537)
    • (2005) Knowledge and Information Systems , vol.8 , Issue.3 , pp. 374-384
    • Zhong, S.1    Ghosh, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.