메뉴 건너뛰기




Volumn 21, Issue 1, 2011, Pages

Regular network model for the sea ice-albedo feedback in the Arctic

Author keywords

[No Author keywords available]

Indexed keywords


EID: 79953285173     PISSN: 10541500     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.3555835     Document Type: Article
Times cited : (12)

References (45)
  • 4
    • 0027873092 scopus 로고
    • The Arctic sea ice-climate system: Observations and modeling
    • 10.1029/93RG01998
    • Barry R. Serreze M. Maslanik J. Preller R. The Arctic sea ice-climate system: Observations and modeling. Rev. Geophys 1993, 3:397. 10.1029/93RG01998.
    • (1993) Rev. Geophys , vol.3 , pp. 397
    • Barry, R.1    Serreze, M.2    Maslanik, J.3    Preller, R.4
  • 6
    • 33745201601 scopus 로고    scopus 로고
    • The tipping point of the iceberg
    • 10.1038/441802a.
    • Walker G. The tipping point of the iceberg. Nature 2006, 441:802. 10.1038/441802a.
    • (2006) Nature , vol.441 , pp. 802
    • Walker, G.1
  • 7
    • 84958276112 scopus 로고    scopus 로고
    • Data for Arctic sea ice extent, see .
    • 2009, Data for Arctic sea ice extent, see.
    • (2009)
  • 8
    • 0033501849 scopus 로고    scopus 로고
    • Thinning of the Arctic sea-ice cover
    • 10.1029/1999GL010863
    • Rothrock D.A. Yu Y. Maykut G. Thinning of the Arctic sea-ice cover. Geophys. Res. Lett 1999, 26:3469. 10.1029/1999GL010863.
    • (1999) Geophys. Res. Lett , vol.26 , pp. 3469
    • Rothrock, D.A.1    Yu, Y.2    Maykut, G.3
  • 9
    • 7044229884 scopus 로고    scopus 로고
    • A mechanism for the high rate of sea ice thinning in the Arctic Ocean
    • 10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2
    • Bitz C. Roe G. A mechanism for the high rate of sea ice thinning in the Arctic Ocean. J. Climate 2004, 17:3623. 10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2.
    • (2004) J. Climate , vol.17 , pp. 3623
    • Bitz, C.1    Roe, G.2
  • 10
    • 33846179002 scopus 로고    scopus 로고
    • Evaluation of the simulation of the annual cycle of Arctic and Antarctic sea ice coverages by 11 major global climate models
    • 10.1029/2005JC003408
    • Parkinson C.L. Vinnikov K.Y. Cavalieri D.J. Evaluation of the simulation of the annual cycle of Arctic and Antarctic sea ice coverages by 11 major global climate models. J. Geophys. Res 2006, 111:C07012. 10.1029/2005JC003408.
    • (2006) J. Geophys. Res , vol.111
    • Parkinson, C.L.1    Vinnikov, K.Y.2    Cavalieri, D.J.3
  • 11
    • 34447507643 scopus 로고    scopus 로고
    • On the reliability of simulated Arctic sea ice in global climate models
    • 10.1029/2007GL029914
    • Eisenman I. Untersteiner N. Wettlaufer J.S. On the reliability of simulated Arctic sea ice in global climate models. Geophys. Res. Lett 2007, 34:1. 10.1029/2007GL029914.
    • (2007) Geophys. Res. Lett , vol.34 , pp. 1
    • Eisenman, I.1    Untersteiner, N.2    Wettlaufer, J.S.3
  • 12
    • 44249090960 scopus 로고    scopus 로고
    • Comment on `On the reliability of simulated Arctic sea ice in global climate models, by I. Eisenman, N. Untersteiner, and J. S. Wettlaufer
    • 10.1029/2007GL031325
    • DeWeaver E.T. Hunke E.C. Holland M.M. Comment on `On the reliability of simulated Arctic sea ice in global climate models, by I. Eisenman, N. Untersteiner, and J. S. Wettlaufer. Geophys. Res. Lett 2008, 35:L04501. 10.1029/2007GL031325.
    • (2008) Geophys. Res. Lett , vol.35
    • DeWeaver, E.T.1    Hunke, E.C.2    Holland, M.M.3
  • 13
    • 44249099286 scopus 로고    scopus 로고
    • Reply to comment by E.T. DeWeaver et al. on `On the reliability of simulated Artic sea ice in global climate models'
    • 10.1029/2007GL032173
    • Eisenman I. Untersteiner N. Wettlaufer J. Reply to comment by E.T. DeWeaver et al. on `On the reliability of simulated Artic sea ice in global climate models'. Geophys. Res. Lett 2008, 35:L04502. 10.1029/2007GL032173.
    • (2008) Geophys. Res. Lett , vol.35
    • Eisenman, I.1    Untersteiner, N.2    Wettlaufer, J.3
  • 14
    • 0027091427 scopus 로고
    • A toy model linking atmospheric and thermal radiation and sea ice growth
    • 10.1029/92JC00695
    • Thorndike A.S. toy model linking atmospheric and thermal radiation and sea ice growth. J. Geophys. Res 1992, 97:9401. 10.1029/92JC00695,.
    • (1992) J. Geophys. Res , vol.97 , pp. 9401
    • Thorndike, A.S.1
  • 15
    • 0037110294 scopus 로고    scopus 로고
    • Dependence of the Arctic ocean ice thickness distribution on the pole-ward energy flux in the atmosphere
    • 10.1029/2000JC000723
    • Bjork G. Sonderkvist J. Dependence of the Arctic ocean ice thickness distribution on the pole-ward energy flux in the atmosphere. J. Geophys. Res 2002, 107:37. 10.1029/2000JC000723.
    • (2002) J. Geophys. Res , vol.107 , pp. 37
    • Bjork, G.1    Sonderkvist, J.2
  • 16
    • 0029475450 scopus 로고
    • Sea ice-albedo climate feedback mechanism
    • 10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2
    • Curry J. Schramm J. Ebert E. Sea ice-albedo climate feedback mechanism. J. Climate 1995, 8:240. 10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2.
    • (1995) J. Climate , vol.8 , pp. 240
    • Curry, J.1    Schramm, J.2    Ebert, E.3
  • 17
    • 58549106968 scopus 로고    scopus 로고
    • Nonlinear threshold behavior during the loss of Arctic sea ice
    • 10.1073/pnas.0806887106
    • Eisenman I. Wettlaufer J.S. Nonlinear threshold behavior during the loss of Arctic sea ice. Proc. Natl. Acad. Sci. U.S.A 2009, 106:28. 10.1073/pnas.0806887106.
    • (2009) Proc. Natl. Acad. Sci. U.S.A , vol.106 , pp. 28
    • Eisenman, I.1    Wettlaufer, J.S.2
  • 18
    • 0001231028 scopus 로고
    • Calculations of temperature regime and heat budget of sea ice in the central Arctic
    • 10.1029/JZ069i022p04755
    • Untersteiner N. Calculations of temperature regime and heat budget of sea ice in the central Arctic. J. Geophys. Res 1964, 69:4755. 10.1029/JZ069i022p04755,.
    • (1964) J. Geophys. Res , vol.69 , pp. 4755
    • Untersteiner, N.1
  • 19
    • 0015019401 scopus 로고
    • Some results from a time-dependent thermodynamic model of sea-ice
    • 10.1029/JC076i006p01550
    • Maykut G.A. Untersteiner N. Some results from time-dependent thermodynamic model of sea-ice. J. Geophys. Res 1971, 76:1550. 10.1029/JC076i006p01550.
    • (1971) J. Geophys. Res , vol.76 , pp. 1550
    • Maykut, G.A.1    Untersteiner, N.2
  • 20
    • 12044252828 scopus 로고
    • Pattern formation outside of equilibrium
    • 10.1103/RevModPhys.65.851
    • Cross M.C. Hohenberg P.C. Pattern formation outside of equilibrium. Rev. Mod. Phys 1993, 65:851. 10.1103/RevModPhys.65.851.
    • (1993) Rev. Mod. Phys , vol.65 , pp. 851
    • Cross, M.C.1    Hohenberg, P.C.2
  • 21
    • 4243241129 scopus 로고    scopus 로고
    • Master stability functions for synchronized coupled systems
    • 10.1103/PhysRevLett.80.2109
    • Pecora L.M. Carroll T.L. Master stability functions for synchronized coupled systems. Phys. Rev. Lett 1998, 80:2109. 10.1103/PhysRevLett.80.2109.
    • (1998) Phys. Rev. Lett , vol.80 , pp. 2109
    • Pecora, L.M.1    Carroll, T.L.2
  • 22
    • 33847279325 scopus 로고    scopus 로고
    • W (University of Alaska Press, Fairbanks
    • Weeks W. Hibbler D. On Sea Ice 2010, and W. (University of Alaska Press, Fairbanks
    • (2010) On Sea Ice
    • Weeks, W.1    Hibbler, D.2
  • 23
    • 84958276113 scopus 로고    scopus 로고
    • Thermodynamic processes in sea ice are distinctly different from those in fresh water ice, since sea ice grows from a solution of water and various ions. Many of the physical variables depend on temperature, salinity or the age of the ice (Ref. 22). The phase transition does not occur suddenly, that is, a volume of sea ice at the generally accepted freezing point of about -1.8
    • {ring operator}C does contain a considerable fraction of brine, which will solidify at lower temperatures (Refs. 24 and 25) Nonetheless, the core process of freezing and melting is similar to that of a pure water system in that during freezing latent heat is released and during melting latent heat is absorbed. Under such strong abstraction and simplification of the phase transition it is common practice for simple models to assume T = 273 K as the freezing and melting point of ice (Ref. 14 and 17).
  • 24
    • 0032545212 scopus 로고    scopus 로고
    • The percolation phase transition in sea ice
    • 10.1126/science.282.5397.2238
    • Golden K. Ackley S. Lytle V. The percolation phase transition in sea ice. Science 1998, 282:2238. 10.1126/science.282.5397.2238.
    • (1998) Science , vol.282 , pp. 2238
    • Golden, K.1    Ackley, S.2    Lytle, V.3
  • 25
    • 0035652528 scopus 로고    scopus 로고
    • Brine percolation and the transport properties of sea ice
    • 10.3189/172756401781818329
    • Golden K. Brine percolation and the transport properties of sea ice. Ann. Glaciol 2001, 33:28. 10.3189/172756401781818329,.
    • (2001) Ann. Glaciol , vol.33 , pp. 28
    • Golden, K.1
  • 26
    • 84958276114 scopus 로고    scopus 로고
    • 6 J for a single cell (Ref. 27).
    • 6 J for a single cell (Ref. 27).
  • 27
    • 84958276115 scopus 로고    scopus 로고
    • W=0.07, latitude Φ=80°N.
    • W=0.07, latitude Φ=80°N.
  • 28
    • 84958276116 scopus 로고    scopus 로고
    • 2 (with a cell dimension of h = 0.3 m and a time step of Δt=4 h ) used for the coupled map lattice in this paper corresponds to (but must not be limited to) the discretized energy diffusion equation (PDE) for constant diffusivities.
    • 2 (with a cell dimension of h = 0.3 m and a time step of Δt=4 h ) used for the coupled map lattice in this paper corresponds to (but must not be limited to) the discretized energy diffusion equation (PDE) for constant diffusivities.
  • 30
    • 84958276117 scopus 로고    scopus 로고
    • Assuming surface temperature for the atmosphere's longwave radiation in Eq. (6) corresponds to an effective cloud cover, as actual clear sky would have a temperature around T = 5 K.
    • Assuming surface temperature for the atmosphere's longwave radiation in Eq. (6) corresponds to an effective cloud cover, as actual clear sky would have a temperature around T = 5 K.
  • 32
    • 84958276118 scopus 로고    scopus 로고
    • Saturation pressure of water on the new Kelvin temperature scale, in Transactions of the American Society of Heating and Ventilating Engineers 347-354, semi-annual meeting of the American Society of Heating and Ventilating Engineers, Murray Bay, Que. Canada (1957); Holger Voemel, Saturation vapor pressure formulations, see .
    • Goff J.A. 2010, Saturation pressure of water on the new Kelvin temperature scale, in Transactions of the American Society of Heating and Ventilating Engineers 347-354, semi-annual meeting of the American Society of Heating and Ventilating Engineers, Murray Bay, Que. Canada (1957); Holger Voemel, Saturation vapor pressure formulations, see.
    • (2010)
    • Goff, J.A.1
  • 33
    • 84958276119 scopus 로고    scopus 로고
    • Parameterizations for saturation vapor pressure over ice and water differ, but they are negligibly small in the temperature range considered here (Ref. 32). We further assume that the atmosphere is saturated with water vapor at the interface between atmosphere and ice-ocean layer.
    • Parameterizations for saturation vapor pressure over ice and water differ, but they are negligibly small in the temperature range considered here (Ref. 32). We further assume that the atmosphere is saturated with water vapor at the interface between atmosphere and ice-ocean layer.
  • 34
    • 84958276120 scopus 로고    scopus 로고
    • A weak local minimum in RLW around the freezing temperature T0 was also reported by Thorndike (Ref. 14) in a significantly different model. Instead of an atmospheric spatiotemporal drive acting on an extended ice-ocean layer, Thorndike uses an atmospheric model coupled to a one-dimensional ice-ocean model.
    • A weak local minimum in RLW around the freezing temperature T0 was also reported by Thorndike (Ref. 14) in a significantly different model. Instead of an atmospheric spatiotemporal drive acting on an extended ice-ocean layer, Thorndike uses an atmospheric model coupled to a one-dimensional ice-ocean model.
  • 35
    • 84958276121 scopus 로고    scopus 로고
    • m+L/2)>1 is stable due to the negative slope of the shifted RLW-curve in this E-regime. Simulations of Eq. (3) confirm a stable asymptotic cycle for OW in the ΔE/Δt vs E phase space (Δt=1 day). An analogous argument and simulation holds for the stable state in the solid phase.
    • m+L/2)>1 is stable due to the negative slope of the shifted RLW-curve in this E-regime. Simulations of Eq. (3) confirm a stable asymptotic cycle for OW in the ΔE/Δt vs E phase space (Δt=1 day). An analogous argument and simulation holds for the stable state in the solid phase.
  • 37
    • 84958276123 scopus 로고    scopus 로고
    • {upwards double arrow}(λ). The albedo α used throughout the paper is defined as the integral of the spectral albedo over the solar shortwave radiation spectrum.
    • {upwards double arrow}(λ). The albedo α used throughout the paper is defined as the integral of the spectral albedo over the solar shortwave radiation spectrum.
  • 38
    • 84958276124 scopus 로고    scopus 로고
    • 0ecosψ, is considered small since e∈[0.97,1.03].
    • 0ecosψ, is considered small since e∈[0.97,1.03].
  • 39
    • 84958276125 scopus 로고    scopus 로고
    • ARM Data Archive, see .
    • ARM Data Archive, see.
  • 42
    • 0036558554 scopus 로고    scopus 로고
    • Estimates of ocean heat flux at SHEBA
    • 10.1029/2001GL014171
    • Perovich D.K. Elder B. Estimates of ocean heat flux at SHEBA. Geophys. Res. Lett 2002, 29:1344. 10.1029/2001GL014171.
    • (2002) Geophys. Res. Lett , vol.29 , pp. 1344
    • Perovich, D.K.1    Elder, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.