메뉴 건너뛰기




Volumn 77, Issue 7, 2011, Pages 2435-2444

Synechococcus sp. strain PCC 7002 nifJ mutant lacking pyruvate:Ferredoxin oxidoreductase

Author keywords

[No Author keywords available]

Indexed keywords

ACETYL-COA; CHARGE SEPARATIONS; COENZYME A; CYANOBACTERIUM; ELECTROCHEMICAL DETECTION; GENE CODES; HYDROGENASE ACTIVITY; IN-VITRO; IN-VIVO; KNOCKOUT MUTANT; MUTANT CELLS; OXIDOREDUCTASES; PHOTOAUTOTROPHIC GROWTH; PHOTOSYSTEM II; PYRUVATE DEHYDROGENASE COMPLEX; PYRUVATES; REDUCTANTS; SECOND PHASE; SYNECHOCOCCUS; TEMPORALLY RESOLVED; WILD TYPES; WT CELLS;

EID: 79953282177     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.02792-10     Document Type: Article
Times cited : (34)

References (48)
  • 1
    • 54449090208 scopus 로고    scopus 로고
    • Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium Arthrospira (Spirulina) maxima
    • Ananyev, G., D. Carrieri, and G. C. Dismukes. 2008. Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium Arthrospira (Spirulina) maxima. Appl. Environ. Microbiol. 74:6102-6113.
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 6102-6113
    • Ananyev, G.1    Carrieri, D.2    Dismukes, G.C.3
  • 2
    • 23444453540 scopus 로고    scopus 로고
    • How fast can photosystem II split water? Kinetic performance at high and low frequencies
    • Ananyev, G., and G. C. Dismukes. 2005. How fast can photosystem II split water? Kinetic performance at high and low frequencies. Photosynth. Res. 84:355-365.
    • (2005) Photosynth. Res. , vol.84 , pp. 355-365
    • Ananyev, G.1    Dismukes, G.C.2
  • 3
    • 0027368519 scopus 로고
    • Growth of the cyanobacterium Anabaena on molecular nitrogen: nifJ is required when iron is limited
    • Bauer, C. C., L. Scappino, and R. Haselkorn. 1993. Growth of the cyanobacterium Anabaena on molecular nitrogen: nifJ is required when iron is limited. Proc. Natl. Acad. Sci. U. S. A. 90:8812-8816.
    • (1993) Proc. Natl. Acad. Sci. U. S. A. , vol.90 , pp. 8812-8816
    • Bauer, C.C.1    Scappino, L.2    Haselkorn, R.3
  • 4
    • 35348824314 scopus 로고    scopus 로고
    • In vivo bicarbonate requirement for water oxidation by photosystem II in the hypercarbonate-requiring cyanobacterium Arthrospira maxima
    • Carrieri, D., G. Ananyev, T. Brown, and G. C. Dismukes. 2007. In vivo bicarbonate requirement for water oxidation by photosystem II in the hypercarbonate-requiring cyanobacterium Arthrospira maxima. J. Inorg. Biochem. 101:1865-1874.
    • (2007) J. Inorg. Biochem. , vol.101 , pp. 1865-1874
    • Carrieri, D.1    Ananyev, G.2    Brown, T.3    Dismukes, G.C.4
  • 5
    • 42749087239 scopus 로고    scopus 로고
    • Renewable hydrogen production by cyanobacteria: nickel requirements for optimal hydrogenase activity
    • Carrieri, D., G. Ananyev, A. M. Garcia Costas, D. A. Bryant, and G. C. Dismukes. 2008. Renewable hydrogen production by cyanobacteria: nickel requirements for optimal hydrogenase activity. Int. J. Hydrogen Energy 33:2014-2022.
    • (2008) Int. J. Hydrogen Energy , vol.33 , pp. 2014-2022
    • Carrieri, D.1    Ananyev, G.2    Garcia Costas, A.M.3    Bryant, D.A.4    Dismukes, G.C.5
  • 6
    • 72249094350 scopus 로고    scopus 로고
    • Identification and quantification of water-soluble metabolites by cryoprobe-assisted nuclear magnetic resonance spectroscopy applied to microbial fermentation
    • Carrieri, D., et al. 2009. Identification and quantification of water-soluble metabolites by cryoprobe-assisted nuclear magnetic resonance spectroscopy applied to microbial fermentation. Magn. Reson. Chem. 47:S138-S146.
    • (2009) Magn. Reson. Chem. , vol.47
    • Carrieri, D.1
  • 7
    • 0021909933 scopus 로고
    • Modulation of acetone-butanol-ethanol fermentation by carbon monoxide and organic acids
    • Datta, R., and J. G. Zeikus. 1985. Modulation of acetone-butanol-ethanol fermentation by carbon monoxide and organic acids. Appl. Environ. Microbiol. 49:522-529.
    • (1985) Appl. Environ. Microbiol. , vol.49 , pp. 522-529
    • Datta, R.1    Zeikus, J.G.2
  • 8
    • 0009500684 scopus 로고
    • Pyruvate fermentation by Streptococcus faecalis
    • Deibel, R. H., and C. F. Niven, Jr. 1964. Pyruvate fermentation by Streptococcus faecalis. J. Bacteriol. 88:4-10.
    • (1964) J. Bacteriol. , vol.88 , pp. 4-10
    • Deibel, R.H.1    Niven Jr., C.F.2
  • 9
    • 0032537589 scopus 로고    scopus 로고
    • The pyruvate dehydrogenase multi-enzyme complex from Gram-negative bacteria
    • de Kok, A., A. F. Hengeveld, A. Martin, and A. H. Westphal. 1998. The pyruvate dehydrogenase multi-enzyme complex from Gram-negative bacteria. Biochim. Biophys. Acta 1385:353-366.
    • (1998) Biochim. Biophys. Acta , vol.1385 , pp. 353-366
    • de Kok, A.1    Hengeveld, A.F.2    Martin, A.3    Westphal, A.H.4
  • 10
    • 73649123872 scopus 로고    scopus 로고
    • Overexpression, isolation, and spectroscopic characterization of the bidirectional [NiFe] hydrogenase from Synechocystis sp. PCC 6803
    • Germer, F., et al. 2009. Overexpression, isolation, and spectroscopic characterization of the bidirectional [NiFe] hydrogenase from Synechocystis sp. PCC 6803. J. Biol. Chem. 284:36462-36472.
    • (2009) J. Biol. Chem. , vol.284 , pp. 36462-36472
    • Germer, F.1
  • 11
    • 34250902424 scopus 로고    scopus 로고
    • Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms
    • Ghirardi, M. L., et al. 2007. Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu. Rev. Plant Biol. 58:71-91.
    • (2007) Annu. Rev. Plant Biol. , vol.58 , pp. 71-91
    • Ghirardi, M.L.1
  • 12
    • 43049128787 scopus 로고    scopus 로고
    • Feedback regulation of photosynthetic electron transport by NADP(H) redox poise
    • Hald, S., B. Nandha, P. Gallois, and G. N. Johnson. 2008. Feedback regulation of photosynthetic electron transport by NADP(H) redox poise. Biochim. Biophys. Acta 1777:433-440.
    • (2008) Biochim. Biophys. Acta , vol.1777 , pp. 433-440
    • Hald, S.1    Nandha, B.2    Gallois, P.3    Johnson, G.N.4
  • 13
    • 11844272529 scopus 로고
    • Chemical procedures for analysis of polysaccharides
    • Hassid, W. Z., and S. Abraham. 1957. Chemical procedures for analysis of polysaccharides. Methods Enzymol. 3:34-50.
    • (1957) Methods Enzymol. , vol.3 , pp. 34-50
    • Hassid, W.Z.1    Abraham, S.2
  • 14
    • 0018849720 scopus 로고
    • Roles of nifF and nifJ gene products in electron transport to nitrogenase in Klebsiella pneumoniae
    • Hill, S., and E. P. Kavanagh. 1980. Roles of nifF and nifJ gene products in electron transport to nitrogenase in Klebsiella pneumoniae. J. Bacteriol. 141: 470-475.
    • (1980) J. Bacteriol. , vol.141 , pp. 470-475
    • Hill, S.1    Kavanagh, E.P.2
  • 15
    • 64349104744 scopus 로고    scopus 로고
    • Photosynthetic oxygen evolution is not reversed at high oxygen pressures: mechanistic consequences for the water-oxidizing complex
    • Kolling, D. R. J., T. S. Brown, G. Ananyev, and G. C. Dismukes. 2009. Photosynthetic oxygen evolution is not reversed at high oxygen pressures: mechanistic consequences for the water-oxidizing complex. Biochemistry 48:1381-1389.
    • (2009) Biochemistry , vol.48 , pp. 1381-1389
    • Kolling, D.R.J.1    Brown, T.S.2    Ananyev, G.3    Dismukes, G.C.4
  • 16
    • 0033787256 scopus 로고    scopus 로고
    • Redox-regulated RNA helicase expression
    • Kujat, S. L., and G. W. Owttrim. 2000. Redox-regulated RNA helicase expression. Plant Physiol. 124:703-714.
    • (2000) Plant Physiol. , vol.124 , pp. 703-714
    • Kujat, S.L.1    Owttrim, G.W.2
  • 17
    • 0023750780 scopus 로고
    • Isolation, sequence analysis, and transcriptional studies of the flavodoxin gene from Anacystis nidulans R2
    • Laudenbach, D. E., M. E. Reith, and N. A. Straus. 1988. Isolation, sequence analysis, and transcriptional studies of the flavodoxin gene from Anacystis nidulans R2. J. Bacteriol. 170:258-265.
    • (1988) J. Bacteriol. , vol.170 , pp. 258-265
    • Laudenbach, D.E.1    Reith, M.E.2    Straus, N.A.3
  • 18
    • 1842453025 scopus 로고    scopus 로고
    • Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress
    • Lawrence, C. L., C. H. Botting, R. Antrobus, and P. J. Coote. 2004. Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol. Cell. Biol. 24:3307-3323.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 3307-3323
    • Lawrence, C.L.1    Botting, C.H.2    Antrobus, R.3    Coote, P.J.4
  • 19
    • 0015212999 scopus 로고
    • Pyruvate:ferredoxin oxidoreductase and its activation by ATP in the blue-green alga Anabaena variabilis
    • Leach, C. K., and N. G. Carr. 1971. Pyruvate:ferredoxin oxidoreductase and its activation by ATP in the blue-green alga Anabaena variabilis. Biochim. Biophys. Acta 245:165-174.
    • (1971) Biochim. Biophys. Acta , vol.245 , pp. 165-174
    • Leach, C.K.1    Carr, N.G.2
  • 20
    • 0026743103 scopus 로고
    • An iron stress operon involved in photosynthetic electron transport in the marine cyanobacterium Synechococcus sp. PCC 7002
    • Leonhardt, K., and N. A. Straus. 1992. An iron stress operon involved in photosynthetic electron transport in the marine cyanobacterium Synechococcus sp. PCC 7002. J. Gen. Microbiol. 138:1613-1621.
    • (1992) J. Gen. Microbiol. , vol.138 , pp. 1613-1621
    • Leonhardt, K.1    Straus, N.A.2
  • 21
    • 0037861912 scopus 로고    scopus 로고
    • The anabolic pyruvate oxidoreductase from Methanococcus maripaludis
    • Lin, W. C., Y.-L. Yang, and W. B. Whitman. 2003. The anabolic pyruvate oxidoreductase from Methanococcus maripaludis. Arch. Microbiol. 179:444-456.
    • (2003) Arch. Microbiol. , vol.179 , pp. 444-456
    • Lin, W.C.1    Yang, Y.-L.2    Whitman, W.B.3
  • 22
    • 77950366997 scopus 로고    scopus 로고
    • An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex
    • Livingston, A. K., J. A. Cruz, K. Kohzuma, A. Dhingra, and D. M. Kramer. 2010. An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex. Plant Cell 22:221-233.
    • (2010) Plant Cell , vol.22 , pp. 221-233
    • Livingston, A.K.1    Cruz, J.A.2    Kohzuma, K.3    Dhingra, A.4    Kramer, D.M.5
  • 23
    • 84859771858 scopus 로고    scopus 로고
    • Transcription profiling of the model cyanobacterium Synechococcus sp. strain PCC 7002 by Next-Gen (SOLiD) sequencing of cDNA
    • in press
    • Ludwig, M., and D. A. Bryant. Transcription profiling of the model cyanobacterium Synechococcus sp. strain PCC 7002 by Next-Gen (SOLiD) sequencing of cDNA. Front. Microbiol., in press.
    • Front. Microbiol.
    • Ludwig, M.1    Bryant, D.A.2
  • 24
    • 0042565990 scopus 로고    scopus 로고
    • Expression and regulation of the crucial plant-like ferredoxin of cyanobacteria
    • Mazouni, K., F. Domain, F. Chauvat, and C. Cassier-Chauvat. 2003. Expression and regulation of the crucial plant-like ferredoxin of cyanobacteria. Mol. Microbiol. 49:1019-1029.
    • (2003) Mol. Microbiol. , vol.49 , pp. 1019-1029
    • Mazouni, K.1    Domain, F.2    Chauvat, F.3    Cassier-Chauvat, C.4
  • 25
    • 77955572487 scopus 로고    scopus 로고
    • Redirecting reductant flux into hydrogen production via metabolic engineer-ing of fermentative carbon metabolism in a cyanobacterium
    • McNeely, K., Y. Xu, N. Bennette, D. A. Bryant, and G. C. Dismukes. 2010. Redirecting reductant flux into hydrogen production via metabolic engineer-ing of fermentative carbon metabolism in a cyanobacterium. Appl. Environ. Microbiol. 76:5032-5038.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 5032-5038
    • McNeely, K.1    Xu, Y.2    Bennette, N.3    Bryant, D.A.4    Dismukes, G.C.5
  • 26
    • 0028157325 scopus 로고
    • In vivo and in vitro nickel-dependent processing of the [NiFe] hydrogenase in Azotobacter vinelandii
    • Menon, A. L., and R. L. Robson. 1994. In vivo and in vitro nickel-dependent processing of the [NiFe] hydrogenase in Azotobacter vinelandii. J. Bacteriol. 176:291-295.
    • (1994) J. Bacteriol. , vol.176 , pp. 291-295
    • Menon, A.L.1    Robson, R.L.2
  • 27
    • 0029731356 scopus 로고    scopus 로고
    • Unleashing hydrogenase activity in carbon monoxide dehydrogenase/acetyl-CoA synthase and pyruvate:ferredoxin oxidoreductase
    • Menon, S., and S. W. Ragsdale. 1996. Unleashing hydrogenase activity in carbon monoxide dehydrogenase/acetyl-CoA synthase and pyruvate:ferredoxin oxidoreductase. Biochemistry 35:15814-15821.
    • (1996) Biochemistry , vol.35 , pp. 15814-15821
    • Menon, S.1    Ragsdale, S.W.2
  • 28
    • 0027982724 scopus 로고
    • Fermentation in the unicellular cyanobacterium Microcystis PCC7806
    • Moezelaar, R., and L. J. Stal. 1994. Fermentation in the unicellular cyanobacterium Microcystis PCC7806. Arch. Microbiol. 162:63-69.
    • (1994) Arch. Microbiol. , vol.162 , pp. 63-69
    • Moezelaar, R.1    Stal, L.J.2
  • 29
    • 75549086645 scopus 로고    scopus 로고
    • CyanoBase: the cyanobacteria genome database update 2010
    • Nakao, M., et al. 2010. CyanoBase: the cyanobacteria genome database update 2010. Nucleic Acids Res. 38:D379-D381.
    • (2010) Nucleic Acids Res. , vol.38
    • Nakao, M.1
  • 30
    • 0036827187 scopus 로고    scopus 로고
    • Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states
    • Nakashimada, Y., M. A. Rachman, T. Kakizono, and N. Nishio. 2002. Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states. Int. J. Hydrogen Energy 27:1399-1405.
    • (2002) Int. J. Hydrogen Energy , vol.27 , pp. 1399-1405
    • Nakashimada, Y.1    Rachman, M.A.2    Kakizono, T.3    Nishio, N.4
  • 31
    • 0020485044 scopus 로고
    • The pyruvate:ferredoxin oxidoreductase in heterocysts of the cyanobacteriuim Anabaena cylindrica
    • Neuer, G., and H. Bothe. 1982. The pyruvate:ferredoxin oxidoreductase in heterocysts of the cyanobacteriuim Anabaena cylindrica. Biochim. Biophys. Acta 716:358-365.
    • (1982) Biochim. Biophys. Acta , vol.716 , pp. 358-365
    • Neuer, G.1    Bothe, H.2
  • 32
    • 27644552110 scopus 로고    scopus 로고
    • Activation process of [NiFe] hydrogenase elucidated by high-resolution X-ray analyses: conversion of the ready to the unready state
    • Ogata, H., et al. 2005. Activation process of [NiFe] hydrogenase elucidated by high-resolution X-ray analyses: conversion of the ready to the unready state. Structure 13:1635-1642.
    • (2005) Structure , vol.13 , pp. 1635-1642
    • Ogata, H.1
  • 33
    • 0026576267 scopus 로고
    • Improved purification, crystallization and primary structure of pyruvate:ferredoxin oxidoreductase from Halobacterium halobium
    • Plaga, W., F. Lottspeich, and D. Oesterhelt. 1992. Improved purification, crystallization and primary structure of pyruvate:ferredoxin oxidoreductase from Halobacterium halobium. Eur. J. Biochem. 205:391-397.
    • (1992) Eur. J. Biochem. , vol.205 , pp. 391-397
    • Plaga, W.1    Lottspeich, F.2    Oesterhelt, D.3
  • 34
    • 0003069463 scopus 로고
    • Genes encoding ferredoxins from Anabaena sp. PCC 7937 and Synechococcus sp. PCC 7942. structure and regulation
    • Plas, J., et al. 1988. Genes encoding ferredoxins from Anabaena sp. PCC 7937 and Synechococcus sp. PCC 7942: structure and regulation. Photosynth. Res. 18:179-204.
    • (1988) Photosynth. Res. , vol.18 , pp. 179-204
    • Plas, J.1
  • 35
    • 0037898938 scopus 로고    scopus 로고
    • Pyruvate ferredoxin oxidoreductase and its radical intermediate
    • Ragsdale, S. W. 2003. Pyruvate ferredoxin oxidoreductase and its radical intermediate. Chem. Rev. 103:2333-2346.
    • (2003) Chem. Rev. , vol.103 , pp. 2333-2346
    • Ragsdale, S.W.1
  • 36
    • 0018167549 scopus 로고
    • Regulation and characterization of protein products coded by the nif (nitrogen fixation) genes of Klebsiella pneumoniae
    • Roberts, G. P., T. MacNeil, D. MacNeil, and W. J. Brill. 1978. Regulation and characterization of protein products coded by the nif (nitrogen fixation) genes of Klebsiella pneumoniae. J. Bacteriol. 136:267-279.
    • (1978) J. Bacteriol. , vol.136 , pp. 267-279
    • Roberts, G.P.1    MacNeil, T.2    MacNeil, D.3    Brill, W.J.4
  • 37
    • 0028053009 scopus 로고
    • On the assay of acetyl-CoA synthetase activity in chloroplasts and leaf extracts
    • Roughan, P. G., and J. B. Ohlrogge. 1994. On the assay of acetyl-CoA synthetase activity in chloroplasts and leaf extracts. Anal. Biochem. 216:77-82.
    • (1994) Anal. Biochem. , vol.216 , pp. 77-82
    • Roughan, P.G.1    Ohlrogge, J.B.2
  • 38
    • 0031951443 scopus 로고    scopus 로고
    • Growth at low temperature causes nitrogen limitation in the cyanobacterium Synechococcus sp. PCC 7002
    • Sakamoto, T., and D. A. Bryant. 1997. Growth at low temperature causes nitrogen limitation in the cyanobacterium Synechococcus sp. PCC 7002. Arch. Microbiol. 169:10-19.
    • (1997) Arch. Microbiol. , vol.169 , pp. 10-19
    • Sakamoto, T.1    Bryant, D.A.2
  • 39
    • 0035808894 scopus 로고    scopus 로고
    • Molecular evidence for the aerobic expression of nifJ, encoding pyruvate:ferredoxin oxidoreductase, in cyanobacteria
    • Schmitz, O., J. Gurke, and H. Bothe. 2001. Molecular evidence for the aerobic expression of nifJ, encoding pyruvate:ferredoxin oxidoreductase, in cyanobacteria. FEMS Microbiol. Lett. 195:97-102.
    • (2001) FEMS Microbiol. Lett. , vol.195 , pp. 97-102
    • Schmitz, O.1    Gurke, J.2    Bothe, H.3
  • 40
    • 67649413347 scopus 로고    scopus 로고
    • The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production
    • Schut, G. J., and M. W. W. Adams. 2009. The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J. Bacteriol. 191:4451-4457.
    • (2009) J. Bacteriol. , vol.191 , pp. 4451-4457
    • Schut, G.J.1    Adams, M.W.W.2
  • 41
    • 0038650623 scopus 로고    scopus 로고
    • Oxygen evolution in photosynthesis: simple analytical solution for the Kok model
    • Shinkarev, V. P. 2003. Oxygen evolution in photosynthesis: simple analytical solution for the Kok model. Biophys. J. 85:435-441.
    • (2003) Biophys. J. , vol.85 , pp. 435-441
    • Shinkarev, V.P.1
  • 42
    • 84980313965 scopus 로고
    • The production of hydrogen peroxide by blue-green algae: a survey
    • Stevens, S. E., C. O. P. Patterson, and J. Myers. 1973. The production of hydrogen peroxide by blue-green algae: a survey. J. Phycol. 9:427-430.
    • (1973) J. Phycol. , vol.9 , pp. 427-430
    • Stevens, S.E.1    Patterson, C.O.P.2    Myers, J.3
  • 43
    • 0033961397 scopus 로고    scopus 로고
    • Analysis of the cleavage site specificity of the endopeptidase involved in the maturation of the large subunit of hydrogenase 3 from Escherichia coli
    • Theodoratou, E., A. Paschos, S. Mintz-Weber, and A. Böck. 2000. Analysis of the cleavage site specificity of the endopeptidase involved in the maturation of the large subunit of hydrogenase 3 from Escherichia coli. Arch. Microbiol. 173:110-116.
    • (2000) Arch. Microbiol. , vol.173 , pp. 110-116
    • Theodoratou, E.1    Paschos, A.2    Mintz-Weber, S.3    Böck, A.4
  • 44
    • 0036836356 scopus 로고    scopus 로고
    • Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation
    • Troshina, O., L. Serebryakova, M. Sheremetieva, and P. Lindblad. 2002. Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. Int. J. Hydrogen Energy 27:1283-1289.
    • (2002) Int. J. Hydrogen Energy , vol.27 , pp. 1283-1289
    • Troshina, O.1    Serebryakova, L.2    Sheremetieva, M.3    Lindblad, P.4
  • 45
    • 3042611448 scopus 로고    scopus 로고
    • Presence and expression of hydrogenase specific C-terminal endopeptidases in cyanobacteria
    • Wünschiers, R., M. Batur, and P. Lindblad. 2003. Presence and expression of hydrogenase specific C-terminal endopeptidases in cyanobacteria. BMC Microbiol. 3:8.
    • (2003) BMC Microbiol , vol.3 , pp. 8
    • Wünschiers, R.1    Batur, M.2    Lindblad, P.3
  • 46
    • 79953266981 scopus 로고    scopus 로고
    • Ph.D. thesis. The Pennsylvania State University, University Park, PA
    • Xu, Y. 2010. Ph.D. thesis. The Pennsylvania State University, University Park, PA.
    • (2010)
    • Xu, Y.1
  • 47
    • 0033570050 scopus 로고    scopus 로고
    • Rubredoxin from the green sulfur bacterium Chlorobium tepidum functions as an electron acceptor for pyruvate ferredoxin oxidoreductase
    • Yoon, K.-S., R. Hille, C. Hemann, and F. R. Tabita. 1999. Rubredoxin from the green sulfur bacterium Chlorobium tepidum functions as an electron acceptor for pyruvate ferredoxin oxidoreductase. J. Biol. Chem. 274:29772-29778.
    • (1999) J. Biol. Chem. , vol.274 , pp. 29772-29778
    • Yoon, K.-S.1    Hille, R.2    Hemann, C.3    Tabita, F.R.4
  • 48
    • 47749157057 scopus 로고    scopus 로고
    • Physiologic roles of soluble pyridine nucleotide transhydrogenase in Escherichia coli as determined by homologous recombination
    • Zhao, H., P. Wang, E. Huang, Y. Ge, and G. Zhu. 2008. Physiologic roles of soluble pyridine nucleotide transhydrogenase in Escherichia coli as determined by homologous recombination. Ann. Microbiol. 58:275-280..
    • (2008) Ann. Microbiol. , vol.58 , pp. 275-280
    • Zhao, H.1    Wang, P.2    Huang, E.3    Ge, Y.4    Zhu, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.