-
1
-
-
0033353533
-
Simple Taylor-series expansion method for a class of second kind integral equations
-
DOI 10.1016/S0377-0427(99)00192-2
-
Y. Ren, B. Zhang, and H. Qiao A simple Taylor-series expansion method for a class of second kind integral equations J. Comput. Appl. Math. 110 1999 15 24 (Pubitemid 30518373)
-
(1999)
Journal of Computational and Applied Mathematics
, vol.110
, Issue.1
, pp. 15-24
-
-
Ren, Y.1
Zhang, B.2
Qiao, H.3
-
2
-
-
0040670110
-
Regularity of the solution to a class of weakly singular Fredholm integral equations of the second kind
-
C. Schneider Regularity of the solution to a class of weakly singular Fredholm integral equations of the second kind Integral Equations Operator Theory 2 1979 62 68
-
(1979)
Integral Equations Operator Theory
, vol.2
, pp. 62-68
-
-
Schneider, C.1
-
3
-
-
84966223417
-
Product integration for weakly singular integral equations
-
C. Schneider Product integration for weakly singular integral equations Math. Comp. 36 1981 207 213
-
(1981)
Math. Comp.
, vol.36
, pp. 207-213
-
-
Schneider, C.1
-
4
-
-
77950341700
-
Sinc-collocation methods for weakly singular Fredholm integral equation of the second kind
-
T. Okayama, T. Matsuo, and M. Sugihara Sinc-collocation methods for weakly singular Fredholm integral equation of the second kind J. Comput. Appl. Math. 234 2010 1211 1227
-
(2010)
J. Comput. Appl. Math.
, vol.234
, pp. 1211-1227
-
-
Okayama, T.1
Matsuo, T.2
Sugihara, M.3
-
5
-
-
0020012414
-
Singularity expansions for the solutions of second kind Fredholm integral equations with weakly singular convolution kernels
-
I.G. Graham Singularity expansions for the solutions of second kind Fredholm integral equations with weakly singular convolution kernels J. Integral Equations Appl. 4 1982 1 30
-
(1982)
J. Integral Equations Appl.
, vol.4
, pp. 1-30
-
-
Graham, I.G.1
-
6
-
-
0016973736
-
On weakly singular Fredholm integral equations with displacement kernels
-
G.R. Richter On weakly singular Fredholm integral equations with displacement kernels J. Math. Anal. Appl. 55 1976 32 42
-
(1976)
J. Math. Anal. Appl.
, vol.55
, pp. 32-42
-
-
Richter, G.R.1
-
7
-
-
0040297593
-
The properties of solutions of weakly singular integral equations
-
G. Vainikko, and A. Pedas The properties of solutions of weakly singular integral equations J. Aust. Math. Soc. B 22 1981 419 430
-
(1981)
J. Aust. Math. Soc. B
, vol.22
, pp. 419-430
-
-
Vainikko, G.1
Pedas, A.2
-
8
-
-
0034159354
-
Wavelet-Galerkin method for integro-differential equations
-
DOI 10.1016/S0168-9274(99)00026-4
-
A. Avudainayagam, and C. Vani Wavelet-Galerkin method for integro-differential equations Appl. Numer. Math. 32 2000 247 254 (Pubitemid 30563601)
-
(2000)
Applied Numerical Mathematics
, vol.32
, Issue.3
, pp. 247-254
-
-
Avudainayagam, A.1
Vani, C.2
-
9
-
-
84966206564
-
Galerkin methods for second kind integral equations with singularities
-
I.G. Graham Galerkin methods for second kind integral equations with singularities Math. Comp. 39 1982 519 533
-
(1982)
Math. Comp.
, vol.39
, pp. 519-533
-
-
Graham, I.G.1
-
10
-
-
84990575058
-
Orthonormal bases of compactly supported wavelets
-
I. Daubechies Orthonormal bases of compactly supported wavelets Comm. Pure Appl. Math. 41 1988 909 996
-
(1988)
Comm. Pure Appl. Math.
, vol.41
, pp. 909-996
-
-
Daubechies, I.1
-
12
-
-
32644435892
-
Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
-
DOI 10.1016/j.matcom.2005.10.001, PII S0378475405002259
-
M. Dehghan Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices Math. Comput. Simulation 71 2006 16 30 (Pubitemid 43243672)
-
(2006)
Mathematics and Computers in Simulation
, vol.71
, Issue.1
, pp. 16-30
-
-
Dehghan, M.1
-
13
-
-
33749559910
-
The one-dimensional heat equation subject to a boundary integral specification
-
DOI 10.1016/j.chaos.2005.11.010, PII S0960077905010982
-
M. Dehghan The one-dimensional heat equation subject to a boundary integral specification Chaos Solitons Fractals 32 2007 661 675 (Pubitemid 44537757)
-
(2007)
Chaos, Solitons and Fractals
, vol.32
, Issue.2
, pp. 661-675
-
-
Dehghan, M.1
-
14
-
-
33645276878
-
A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications
-
M. Dehghan A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications Numer. Methods Partial Differential Equations 22 2006 220 257
-
(2006)
Numer. Methods Partial Differential Equations
, vol.22
, pp. 220-257
-
-
Dehghan, M.1
-
15
-
-
0002284215
-
On wavelet based algorithms for solving differential equations
-
G. Beylkin On wavelet based algorithms for solving differential equations J.J. Benedetto, Wavelets: Mathematics and Applications 1993 CRC Press Boca Raton, FL 449 466
-
(1993)
Wavelets: Mathematics and Applications
, pp. 449-466
-
-
Beylkin, G.1
-
16
-
-
0000139676
-
Wavelet-like bases for the fast solution of second-kind integral equations
-
B. Alpert, G. Beylkin, R.R. Coifman, and V. Rokhlin Wavelet-like bases for the fast solution of second-kind integral equations SIAM J. Sci. Stat. Comput. 14 1 1993 159 184
-
(1993)
SIAM J. Sci. Stat. Comput.
, vol.14
, Issue.1
, pp. 159-184
-
-
Alpert, B.1
Beylkin, G.2
Coifman, R.R.3
Rokhlin, V.4
-
17
-
-
0345911727
-
Solution of time-dependent diffusion equations with variable coefficients using maltiwavelets
-
A. Averbucha, M. Israeli, and L. Vozovoi Solution of time-dependent diffusion equations with variable coefficients using maltiwavelets J. Comput. Phys. 150 1999 394 424
-
(1999)
J. Comput. Phys.
, vol.150
, pp. 394-424
-
-
Averbucha, A.1
Israeli, M.2
Vozovoi, L.3
-
18
-
-
0029323498
-
On solving first-kind integral equations using wavelets on bounded interval
-
J.C. Goswami, A.K. Chan, and C.K. Chui On solving first-kind integral equations using wavelets on bounded interval IEEE Trans. Antennas Propag. 43 1995 614 622
-
(1995)
IEEE Trans. Antennas Propag.
, vol.43
, pp. 614-622
-
-
Goswami, J.C.1
Chan, A.K.2
Chui, C.K.3
-
19
-
-
17644400551
-
Solution of nonlinear fredholm-hammerstein integral equations by using semiorthogonal spline wavelets
-
DOI 10.1155/MPE.2005.113
-
M. Lakestani, M. Razzaghi, and M. Dehghan Solution of nonlinear FredholmHammerstein integral equations by using semiorthogonal spline wavelets Math. Probl. Eng. 1 2005 113 121 (Pubitemid 40566592)
-
(2005)
Mathematical Problems in Engineering
, vol.2005
, Issue.1
, pp. 113-121
-
-
Lakestani, M.1
Razzaghi, M.2
Dehghan, M.3
-
20
-
-
34547781209
-
The solution of a second-order nonlinear differential equation with Neumann boundary conditions using semi-orthogonal B-spline wavelets
-
DOI 10.1080/00207160601025656, PII 769835995
-
M. Lakestani, and M. Dehghan The solution of a second-order nonlinear differential equation with Neumann boundary conditions using semi-orthogonal B-spline wavelets Int. J. Comput. Math. 83 2006 685 694 (Pubitemid 47226504)
-
(2006)
International Journal of Computer Mathematics
, vol.83
, Issue.8-9
, pp. 685-694
-
-
Lakestani, M.1
Dehghan, M.2
-
21
-
-
33749527174
-
Numerical solution of the controlled Duffing oscillator by semi-orthogonal spline wavelets
-
DOI 10.1088/0031-8949/74/3/010, PII S00318949062598910, 010
-
M. Lakestani, M. Razzaghi, and M. Dehghan Numerical solution of the controlled duffing oscillator by semi-orthogonal spline wavelets Phys. Scr. 74 2006 362 366 (Pubitemid 44523025)
-
(2006)
Physica Scripta
, vol.74
, Issue.3
, pp. 362-366
-
-
Lakestani, M.1
Razzaghi, M.2
Dehghan, M.3
-
22
-
-
0031234675
-
Semi-orthogonal versus orthogonal wavelet basis sets for solving integral equations
-
PII S0018926X97062637
-
R.D. Nevels, J.C. Goswami, and H. Tehrani Semi-orthogonal versus orthogonal wavelet basis sets for solving integral equations IEEE Trans. Antennas Propag. 45 1997 1332 1339 (Pubitemid 127770912)
-
(1997)
IEEE Transactions on Antennas and Propagation
, vol.45
, Issue.9
, pp. 1332-1339
-
-
Nevels, R.D.1
Goswami, J.C.2
Tehrani, H.3
-
24
-
-
2342556601
-
Wavelets for the fast solution of second-kind integral equations
-
Department of Computer Science, Yale University, New Haven, CT
-
B. Alpert, G. Beylkin, R. Coifman, R. Rokhlin, Wavelets for the fast solution of second-kind integral equations, Technical Report, Department of Computer Science, Yale University, New Haven, CT, 1990.
-
(1990)
Technical Report
-
-
Alpert, B.1
Beylkin, G.2
Coifman, R.3
Rokhlin, R.4
-
25
-
-
0002423338
-
Wavelet solutions of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension
-
R. Glowinski, W. Lawton, M. Ravachol, and E. Tenenbaum Wavelet solutions of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension Comput. Methods Appl. Sci. Engrg. 1990 55 120
-
(1990)
Comput. Methods Appl. Sci. Engrg.
, pp. 55-120
-
-
Glowinski, R.1
Lawton, W.2
Ravachol, M.3
Tenenbaum, E.4
-
27
-
-
0028495847
-
Multi-resolution analysis of multiplicity, application to dyadic interpolation
-
A. Herve Multi-resolution analysis of multiplicity, application to dyadic interpolation Comput. Harmonic Anal. 1 1994 299 315
-
(1994)
Comput. Harmonic Anal.
, vol.1
, pp. 299-315
-
-
Herve, A.1
-
28
-
-
0000139676
-
L2 for the sparse representation of integral operators
-
L2 for the sparse representation of integral operators SIAM J. Math. Anal. 24 1 1993 246 262
-
(1993)
SIAM J. Math. Anal.
, vol.24
, Issue.1
, pp. 246-262
-
-
Alpert, B.1
-
29
-
-
0029207792
-
Short wavelets and matrix dilation equations
-
G. Strang, and V. Strela Short wavelets and matrix dilation equations IEEE Trans. Signal Process. 43 1995 108 115
-
(1995)
IEEE Trans. Signal Process.
, vol.43
, pp. 108-115
-
-
Strang, G.1
Strela, V.2
-
30
-
-
0037058028
-
Adaptive solution of partial differential equations in multiwavelet bases
-
B. Alpert, G. Beylkin, D. Gines, and L. Vozovoi Adaptive solution of partial differential equations in multiwavelet bases J. Comput. Phys. 182 2002 149 190
-
(2002)
J. Comput. Phys.
, vol.182
, pp. 149-190
-
-
Alpert, B.1
Beylkin, G.2
Gines, D.3
Vozovoi, L.4
-
31
-
-
19044362072
-
Solution of Hallen's integral equation using multiwavelets
-
DOI 10.1016/j.cpc.2005.01.016, PII S0010465505002298
-
M. Shamsi, and M. Razzaghi Solution of Hallen's integral equation using multiwavelets Comput. Phys. Comm. 168 2005 187 197 (Pubitemid 40710264)
-
(2005)
Computer Physics Communications
, vol.168
, Issue.3
, pp. 187-197
-
-
Shamsi, M.1
Razzaghi, M.2
-
32
-
-
84891087984
-
A survey of numerical methods for solving nonlinear integral equations
-
K.E. Atkinson A survey of numerical methods for solving nonlinear integral equations J. Integral Equations Appl. 4 1992 15 46
-
(1992)
J. Integral Equations Appl.
, vol.4
, pp. 15-46
-
-
Atkinson, K.E.1
-
34
-
-
84966253648
-
The discrete Galerkin method for integral equations
-
K.E. Atkinson, and A. Bogomolny The discrete Galerkin method for integral equations Math. Comp. 48 1987 595 616
-
(1987)
Math. Comp.
, vol.48
, pp. 595-616
-
-
Atkinson, K.E.1
Bogomolny, A.2
-
35
-
-
2042532904
-
The discrete Galerkin method for nonlinear integral equations
-
K.E. Atkinson, and F.A. Potra The discrete Galerkin method for nonlinear integral equations J. Integral Equations Appl. 1 1988 17 54
-
(1988)
J. Integral Equations Appl.
, vol.1
, pp. 17-54
-
-
Atkinson, K.E.1
Potra, F.A.2
-
37
-
-
37749007622
-
Chebyshev finite difference method for Fredholm integro-differential equation
-
M. Dehghan, and A. Saadatmandi Chebyshev finite difference method for Fredholm integro-differential equation Int. J. Comput. Math. 86 2008 123 130
-
(2008)
Int. J. Comput. Math.
, vol.86
, pp. 123-130
-
-
Dehghan, M.1
Saadatmandi, A.2
-
38
-
-
13844298037
-
Numerical solution of integral equations by means of the Sinc collocation method based on the double exponential transformation
-
DOI 10.1016/j.cam.2004.09.019, PII S037704270400425X
-
M. Muhammad, A. Nurmuhammad, M. Mori, and M. Sugihara Numerical solution of integral equations by means of the sinc collocation method based on the double exponential transformation J. Comput. Appl. Math. 177 2005 269 286 (Pubitemid 40241937)
-
(2005)
Journal of Computational and Applied Mathematics
, vol.177
, Issue.2
, pp. 269-286
-
-
Muhammad, M.1
Nurmuhammad, A.2
Mori, M.3
Sugihara, M.4
-
39
-
-
77949295595
-
A meshless based method for solution of integral equations
-
D. Mirzaei, and M. Dehghan A meshless based method for solution of integral equations Appl. Numer. Math. 60 2010 245 262
-
(2010)
Appl. Numer. Math.
, vol.60
, pp. 245-262
-
-
Mirzaei, D.1
Dehghan, M.2
-
40
-
-
51349122661
-
On the numerical solution of nonlinear systems of Volterra integro-differential equations with delay arguments
-
M. Shakourifar, and M. Dehghan On the numerical solution of nonlinear systems of Volterra integro-differential equations with delay arguments Computing 82 2008 241 260
-
(2008)
Computing
, vol.82
, pp. 241-260
-
-
Shakourifar, M.1
Dehghan, M.2
-
41
-
-
34250678924
-
Numerical solution of the nonlinear Fredholm integral equations by positive definite functions
-
DOI 10.1016/j.amc.2007.02.063, PII S0096300307002238
-
A. Alipanah, and M. Dehghan Numerical solution of the nonlinear Fredholm integral equations by positive definite functions Appl. Math. Comput. 190 2007 1754 1761 (Pubitemid 46935911)
-
(2007)
Applied Mathematics and Computation
, vol.190
, Issue.2
, pp. 1754-1761
-
-
Alipanah, A.1
Dehghan, M.2
-
42
-
-
11144275388
-
On the solution of an initial-boundary value problem that combines neumann and integral condition for the wave equation
-
DOI 10.1002/num.20019
-
M. Dehghan On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation Numer. Methods Partial Differential Equations 21 2005 24 40 (Pubitemid 40030408)
-
(2005)
Numerical Methods for Partial Differential Equations
, vol.21
, Issue.1
, pp. 24-40
-
-
Dehghan, M.1
-
43
-
-
70350572837
-
He's variational iteration method for the non-linear mixed VolterraFredholm integral equations
-
S.A. Yousefi, A. Lotfi, and M. Dehghan He's variational iteration method for the non-linear mixed VolterraFredholm integral equations Comput. Math. Appl. 58 2009 2172 2176
-
(2009)
Comput. Math. Appl.
, vol.58
, pp. 2172-2176
-
-
Yousefi, S.A.1
Lotfi, A.2
Dehghan, M.3
-
44
-
-
77953084724
-
Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via He's variational iteration technique
-
M. Dehghan, and F. Shakeri Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via He's variational iteration technique Int. J. Numer. Meth. Biomed. Engng. 26 2010 705 715
-
(2010)
Int. J. Numer. Meth. Biomed. Engng.
, vol.26
, pp. 705-715
-
-
Dehghan, M.1
Shakeri, F.2
-
45
-
-
30844464816
-
Solution of a partial integro-differential equation arising from viscoelasticity
-
DOI 10.1080/00207160500069847, PII J42368645267X17
-
M. Dehghan Solution of a partial integro-differential equation arising from viscoelasticity Int. J. Comput. Math. 83 2006 123 129 (Pubitemid 43102596)
-
(2006)
International Journal of Computer Mathematics
, vol.83
, Issue.1
, pp. 123-129
-
-
Dehghan, M.1
-
46
-
-
77950300524
-
Numerical solution of the higher-order linear Fredholm integro-differentialdifference equation with variable coefficients
-
A. Saadatmandi, and M. Dehghan Numerical solution of the higher-order linear Fredholm integro-differentialdifference equation with variable coefficients Comput. Math. Appl. 59 2010 2996 3004
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 2996-3004
-
-
Saadatmandi, A.1
Dehghan, M.2
-
48
-
-
23744472619
-
Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations
-
DOI 10.1016/j.matcom.2005.02.035, PII S037847540500090X
-
S. Yousefi, and M. Razzaghi Legendre wavelets method for the nonlinear VolterraFredholm integral equations Math. Comput. Simulation 70 2005 1 8 (Pubitemid 41119021)
-
(2005)
Mathematics and Computers in Simulation
, vol.70
, Issue.1
, pp. 1-8
-
-
Yousefi, S.1
Razzaghi, M.2
-
49
-
-
0034159588
-
Variable transformations in the numerical solution of second kind Volterra integral equations with continuous and weakly singular kernels; extensions to Fredholm integral equations
-
DOI 10.1016/S0377-0427(99)00297-6
-
E.A. Galperin, E.J. Kansa, A. Makroglou, and S.A. Nelson Variable transformations in the numerical solution of second kind Volterra integral equations with continuous and weakly singular kernels; extensions to Fredholm integral equations J. Comput. Appl. Math. 115 2000 193 211 (Pubitemid 30564625)
-
(2000)
Journal of Computational and Applied Mathematics
, vol.115
, Issue.1-2
, pp. 193-211
-
-
Galperin, E.A.1
Kansa, E.J.2
Makroglou, A.3
Nelson, S.A.4
-
50
-
-
75149129967
-
Product integration methods based on discrete spline quasi-interpolants and application to weakly singular integral equations
-
C. Allouch, P. Sablonnire, D. Sbibih, and M. Tahrichi Product integration methods based on discrete spline quasi-interpolants and application to weakly singular integral equations J. Comput. Appl. Math. 233 2010 2855 2866
-
(2010)
J. Comput. Appl. Math.
, vol.233
, pp. 2855-2866
-
-
Allouch, C.1
Sablonnire, P.2
Sbibih, D.3
Tahrichi, M.4
|