-
1
-
-
0018184969
-
Thresholds and traveling for the geographical spread of infection
-
Diekmann O. Thresholds and traveling for the geographical spread of infection. J. Math. Biol. 6 (1978) 109-130
-
(1978)
J. Math. Biol.
, vol.6
, pp. 109-130
-
-
Diekmann, O.1
-
2
-
-
0017745277
-
A model for the spatial spread of an epidemic
-
Thieme H.R. A model for the spatial spread of an epidemic. J. Math. Biol. 4 (1977) 337-351
-
(1977)
J. Math. Biol.
, vol.4
, pp. 337-351
-
-
Thieme, H.R.1
-
3
-
-
0037089756
-
A reliable treatment for mixed Volterra-Fredholm integral equations
-
Wazwaz A.M. A reliable treatment for mixed Volterra-Fredholm integral equations. Appl. Math. Comput. 127 (2002) 405-414
-
(2002)
Appl. Math. Comput.
, vol.127
, pp. 405-414
-
-
Wazwaz, A.M.1
-
4
-
-
0028762859
-
Asymptotic error expansion for the trapezoidal Nystrom method of linear Volterra-Fredholm integral equations
-
Han G., and Zhang L. Asymptotic error expansion for the trapezoidal Nystrom method of linear Volterra-Fredholm integral equations. J. Comput. Appl. Math. 51 (1994) 339-348
-
(1994)
J. Comput. Appl. Math.
, vol.51
, pp. 339-348
-
-
Han, G.1
Zhang, L.2
-
5
-
-
0000211694
-
Continuous time collocation method for Volterra-Fredholm integral equations
-
Kauthen J.P. Continuous time collocation method for Volterra-Fredholm integral equations. Numer. Math. 56 (1989) 409-424
-
(1989)
Numer. Math.
, vol.56
, pp. 409-424
-
-
Kauthen, J.P.1
-
6
-
-
0001753910
-
On mixed Volterra-Fredholm type integral equations
-
Pachpatta B.G. On mixed Volterra-Fredholm type integral equations. Indian J. Pure Appl. Math. 17 (1986) 488-496
-
(1986)
Indian J. Pure Appl. Math.
, vol.17
, pp. 488-496
-
-
Pachpatta, B.G.1
-
7
-
-
0001128239
-
On approximate solution for integral equations of mixed type
-
Hacia L. On approximate solution for integral equations of mixed type. ZAMM Z. Angew. Math. Mech. 76 (1996) 415-416
-
(1996)
ZAMM Z. Angew. Math. Mech.
, vol.76
, pp. 415-416
-
-
Hacia, L.1
-
8
-
-
25144466355
-
Projection methods for integral equations in epidemic
-
Hacia L. Projection methods for integral equations in epidemic. J. Math. Model. Anal. 7 (2002) 229-240
-
(2002)
J. Math. Model. Anal.
, vol.7
, pp. 229-240
-
-
Hacia, L.1
-
9
-
-
0025477912
-
On the numerical solution of nonlinear Volterra-Fredholm integral equations by collocation methods
-
Brunner H. On the numerical solution of nonlinear Volterra-Fredholm integral equations by collocation methods. SIAM J. Numer. Anal. 27 (1990) 987-1000
-
(1990)
SIAM J. Numer. Anal.
, vol.27
, pp. 987-1000
-
-
Brunner, H.1
-
10
-
-
0033132499
-
A new computational method for Volterra-Fredholm integral equations
-
Maleknejad K., and Hadizadeh M. A new computational method for Volterra-Fredholm integral equations. Comput. Math. Appl. 37 (1999) 1-8
-
(1999)
Comput. Math. Appl.
, vol.37
, pp. 1-8
-
-
Maleknejad, K.1
Hadizadeh, M.2
-
11
-
-
23744472619
-
Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations
-
Yousefi S., and Razzaghi M. Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations. Math. Comput. Simulation 70 (2005) 1-8
-
(2005)
Math. Comput. Simulation
, vol.70
, pp. 1-8
-
-
Yousefi, S.1
Razzaghi, M.2
-
12
-
-
0006990947
-
Variational iteration method for delay differential equations
-
He J.H. Variational iteration method for delay differential equations. Commun. Non linear Sci. Numer. Simul. 2 4 (1997) 235-236
-
(1997)
Commun. Non linear Sci. Numer. Simul.
, vol.2
, Issue.4
, pp. 235-236
-
-
He, J.H.1
-
13
-
-
0032307661
-
Approximate analytical solution for seepage flow with fractional derivatives in porous media
-
He J.H. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Engrg. 167 (1998) 57-68
-
(1998)
Comput. Methods Appl. Mech. Engrg.
, vol.167
, pp. 57-68
-
-
He, J.H.1
-
14
-
-
0032308350
-
Approximate solution of nonlinear differential equations with convolution product nonlinearities
-
He J.H. Approximate solution of nonlinear differential equations with convolution product nonlinearities. Comput. Methods Appl. Mech. Engrg. 167 (1998) 69-73
-
(1998)
Comput. Methods Appl. Mech. Engrg.
, vol.167
, pp. 69-73
-
-
He, J.H.1
-
15
-
-
0000092673
-
Variational iteration method - a kind of nonlinear analytical technique: Some examples
-
He J.H. Variational iteration method - a kind of nonlinear analytical technique: Some examples. Int. J. Non-linear Mech. 34 (1999) 699-708
-
(1999)
Int. J. Non-linear Mech.
, vol.34
, pp. 699-708
-
-
He, J.H.1
-
16
-
-
0006996396
-
General use of the Lagrange multiplier in non-linear mathematical physics
-
Nemat-Nasser S. (Ed), Pergamon Press, Oxford
-
Inokuti M., et al. General use of the Lagrange multiplier in non-linear mathematical physics. In: Nemat-Nasser S. (Ed). Variational Method in the Mechanics of Solids (1978), Pergamon Press, Oxford 156-162
-
(1978)
Variational Method in the Mechanics of Solids
, pp. 156-162
-
-
Inokuti, M.1
-
17
-
-
34250696383
-
On the convergence of He's variational iteration method
-
Tatari M., and Dehghan M. On the convergence of He's variational iteration method. J. Comput. Appl. Math. 207 (2007) 121-128
-
(2007)
J. Comput. Appl. Math.
, vol.207
, pp. 121-128
-
-
Tatari, M.1
Dehghan, M.2
-
18
-
-
33749530855
-
The use of He's variational iteration method for solving the Fokker-Planck equation
-
Dehghan M., and Tatari M. The use of He's variational iteration method for solving the Fokker-Planck equation. Phys. Scripta 74 (2006) 310-316
-
(2006)
Phys. Scripta
, vol.74
, pp. 310-316
-
-
Dehghan, M.1
Tatari, M.2
-
19
-
-
33846523615
-
Solution of problems in calculus of variations via He's variational iteration method
-
Tatari M., and Dehghan M. Solution of problems in calculus of variations via He's variational iteration method. Phys. Lett. A 362 (2007) 401-406
-
(2007)
Phys. Lett. A
, vol.362
, pp. 401-406
-
-
Tatari, M.1
Dehghan, M.2
-
20
-
-
39149109311
-
Application of He's variational iteration method for solving the Cauchy reaction-diffusion problem
-
Dehghan M., and Shakeri F. Application of He's variational iteration method for solving the Cauchy reaction-diffusion problem. J. Comput. Appl. Math. 214 (2008) 435-446
-
(2008)
J. Comput. Appl. Math.
, vol.214
, pp. 435-446
-
-
Dehghan, M.1
Shakeri, F.2
-
21
-
-
34548509029
-
Approximate solution of a differential equation arising in astrophysics using the variational iteration method
-
Dehghan M., and Shakeri F. Approximate solution of a differential equation arising in astrophysics using the variational iteration method. New Astronomy 13 (2008) 53-59
-
(2008)
New Astronomy
, vol.13
, pp. 53-59
-
-
Dehghan, M.1
Shakeri, F.2
-
22
-
-
35448960877
-
Numerical solution of the Klein-Gordon equation via He's variational iteration method
-
Shakeri F., and Dehghan M. Numerical solution of the Klein-Gordon equation via He's variational iteration method. Nonlinear Dynam. 51 (2008) 89-97
-
(2008)
Nonlinear Dynam.
, vol.51
, pp. 89-97
-
-
Shakeri, F.1
Dehghan, M.2
-
23
-
-
35348829740
-
Identifying an unknown function in a parabolic equation with overspecified data via He's variational iteration method
-
Dehghan M., and Tatari M. Identifying an unknown function in a parabolic equation with overspecified data via He's variational iteration method. Chaos Solitons Fractals 36 (2008) 157-166
-
(2008)
Chaos Solitons Fractals
, vol.36
, pp. 157-166
-
-
Dehghan, M.1
Tatari, M.2
-
24
-
-
34848823089
-
Numerical solution of a biological population model using He's variational iteration method
-
Dehghan M., and Shakeri F. Numerical solution of a biological population model using He's variational iteration method. Comput. Math. Appl. 54 (2007) 1197-1209
-
(2007)
Comput. Math. Appl.
, vol.54
, pp. 1197-1209
-
-
Dehghan, M.1
Shakeri, F.2
-
25
-
-
32644435892
-
Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
-
Dehghan M. Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simulation 71 (2006) 16-30
-
(2006)
Math. Comput. Simulation
, vol.71
, pp. 16-30
-
-
Dehghan, M.1
-
26
-
-
47949123722
-
Solution of a model describing biological species living together using the variational iteration method
-
Shakeri F., and Dehghan M. Solution of a model describing biological species living together using the variational iteration method. Math. Comput. Modelling 48 (2008) 685-699
-
(2008)
Math. Comput. Modelling
, vol.48
, pp. 685-699
-
-
Shakeri, F.1
Dehghan, M.2
-
27
-
-
24944474278
-
Application of He's variational iteration method to Helmholtz equation
-
Momani S., and Abuasad S. Application of He's variational iteration method to Helmholtz equation. Chaos Solitons Fractals 27 5 (2006) 1119-1123
-
(2006)
Chaos Solitons Fractals
, vol.27
, Issue.5
, pp. 1119-1123
-
-
Momani, S.1
Abuasad, S.2
-
28
-
-
34249893388
-
Approximate solutions of K (2, 2), KdV and modified KdV equations by variational iteration method, homotopy perturbation method and homotopy analysis method
-
Tari H., Ganji D.D., and Rostamian M. Approximate solutions of K (2, 2), KdV and modified KdV equations by variational iteration method, homotopy perturbation method and homotopy analysis method. Int. J. Nonlinear Sci. Numer. Simul. 8 2 (2007) 203-210
-
(2007)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.8
, Issue.2
, pp. 203-210
-
-
Tari, H.1
Ganji, D.D.2
Rostamian, M.3
-
29
-
-
33748425302
-
Numerical comparison of methods for solving linear differential equations of fractional order
-
Momani S., and Odibat Z. Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Soliton Fractals 31 (2007) 1248-1255
-
(2007)
Chaos Soliton Fractals
, vol.31
, pp. 1248-1255
-
-
Momani, S.1
Odibat, Z.2
-
30
-
-
30344464250
-
Application of variational iteration method to Nonlinear differential equations of fractional order
-
Odibat Z.M., and Momani S. Application of variational iteration method to Nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 7 (2006) 27-34
-
(2006)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.7
, pp. 27-34
-
-
Odibat, Z.M.1
Momani, S.2
-
31
-
-
32644457439
-
The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations
-
Bildik N., and Konuralp A. The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations. Int. J. Nonlinear Sci. Numer. Simul. 7 (2006) 65-70
-
(2006)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.7
, pp. 65-70
-
-
Bildik, N.1
Konuralp, A.2
-
32
-
-
30344475545
-
Construction of solitary solution and compacton-like solution by variational iteration method
-
He J.H., and Wu X.H. Construction of solitary solution and compacton-like solution by variational iteration method. Chaos Solitons Fractals 29 (2006) 108-113
-
(2006)
Chaos Solitons Fractals
, vol.29
, pp. 108-113
-
-
He, J.H.1
Wu, X.H.2
-
33
-
-
33748578650
-
Variational iteration method for one dimensional nonlinear thermoelasticity
-
Sweilam N.H., and Khader M.M. Variational iteration method for one dimensional nonlinear thermoelasticity. Chaos Solitons Fractals 32 (2007) 145-149
-
(2007)
Chaos Solitons Fractals
, vol.32
, pp. 145-149
-
-
Sweilam, N.H.1
Khader, M.M.2
-
35
-
-
33645972898
-
Some asymptotic methods for strongly nonlinear equations
-
He J.H. Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20 10 (2006) 1141-1199
-
(2006)
Int. J. Mod. Phys. B
, vol.20
, Issue.10
, pp. 1141-1199
-
-
He, J.H.1
-
36
-
-
51349122661
-
On the numerical solution of nonlinear systems of Volterra integro-differential equations with delay arguments
-
Shakourifar M., and Dehghan M. On the numerical solution of nonlinear systems of Volterra integro-differential equations with delay arguments. Computing 82 (2008) 241-260
-
(2008)
Computing
, vol.82
, pp. 241-260
-
-
Shakourifar, M.1
Dehghan, M.2
-
37
-
-
58149464172
-
The solution of linear and nonlinear systems of Volterra functional equations using Adomian-Pade technique
-
Dehghan M., Shakourifar M., and Hamidi A. The solution of linear and nonlinear systems of Volterra functional equations using Adomian-Pade technique. Chaos, Solitons and Fractals 39 (2009) 2509-2521
-
(2009)
Chaos, Solitons and Fractals
, vol.39
, pp. 2509-2521
-
-
Dehghan, M.1
Shakourifar, M.2
Hamidi, A.3
-
38
-
-
33847215123
-
He's variational iteration method for computing a control parameter in a semi-linear inverse parabolic equation
-
Tatari M., and Dehghan M. He's variational iteration method for computing a control parameter in a semi-linear inverse parabolic equation. Choas, Solitons and Fractals 33 (2007) 671-677
-
(2007)
Choas, Solitons and Fractals
, vol.33
, pp. 671-677
-
-
Tatari, M.1
Dehghan, M.2
-
39
-
-
70350570458
-
Improvement of He's variational iteration method for solving systems of differential equations
-
Tatari M., and Dehghan M. Improvement of He's variational iteration method for solving systems of differential equations. Computers and Mathematics with Applications 58 11-12 (2009) 2160-2166
-
(2009)
Computers and Mathematics with Applications
, vol.58
, Issue.11-12
, pp. 2160-2166
-
-
Tatari, M.1
Dehghan, M.2
-
40
-
-
70350572810
-
Variational iteration method for solving the wave equation subject to an integral conservation condition
-
in press
-
M. Dehghan, A. Saadatmandi, Variational iteration method for solving the wave equation subject to an integral conservation condition, Chaos, Solitons and Fractals (2008) (in press)
-
(2008)
Chaos, Solitons and Fractals
-
-
Dehghan, M.1
Saadatmandi, A.2
-
41
-
-
58149468214
-
The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics
-
Article No. 065004
-
Dehghan M., and Shakeri F. The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics. Physica Scripta 78 (2008) 1-11 Article No. 065004
-
(2008)
Physica Scripta
, vol.78
, pp. 1-11
-
-
Dehghan, M.1
Shakeri, F.2
-
42
-
-
70350575223
-
Variational iteration method for solving a generalized pantograph equation
-
Saadatmandi A., and Dehghan M. Variational iteration method for solving a generalized pantograph equation. Computers and Mathematics with Applications 58 11-12 (2009) 2190-2196
-
(2009)
Computers and Mathematics with Applications
, vol.58
, Issue.11-12
, pp. 2190-2196
-
-
Saadatmandi, A.1
Dehghan, M.2
-
43
-
-
70350572254
-
Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via He's variational iteration technique
-
in press
-
M. Dehghan, F. Shakeri, Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via He's variational iteration technique, Communications in Numerical Methods in Engineering (2008) (in press)
-
(2008)
Communications in Numerical Methods in Engineering
-
-
Dehghan, M.1
Shakeri, F.2
|