메뉴 건너뛰기




Volumn 10, Issue 2, 2011, Pages 143-149

Fitting E max models to clinical trial dose-response data

Author keywords

Clinical trial; Dose response; E max model; Model selection; Non linear model

Indexed keywords

ARTICLE; CONTROLLED STUDY; DOSE RESPONSE; MAXIMUM LIKELIHOOD METHOD; OUTCOME ASSESSMENT; SIMULATION;

EID: 79953245145     PISSN: 15391604     EISSN: 15391612     Source Type: Journal    
DOI: 10.1002/pst.432     Document Type: Article
Times cited : (23)

References (11)
  • 4
    • 35748932852 scopus 로고    scopus 로고
    • R Development Core Team. R Foundation for Statistical Computing: Vienna, Austria
    • R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria, 2007.
    • (2007) R: A Language and Environment for Statistical Computing
  • 10
    • 77955859912 scopus 로고    scopus 로고
    • Determining a minimum clinically important difference between treatments for a patient reported outcome
    • Kirby S, Chuang-Stein C, Morris M. Determining a minimum clinically important difference between treatments for a patient reported outcome. Journal of Biopharmaceutical Statistics; 2010; 20:5.
    • (2010) Journal of Biopharmaceutical Statistics , vol.20 , pp. 5
    • Kirby, S.1    Chuang-Stein, C.2    Morris, M.3
  • 11
    • 33751557786 scopus 로고    scopus 로고
    • max model applied to sparse dose-response designs
    • DOI: 10.1080/10543400600860469
    • max model applied to sparse dose-response designs. Journal of Biopharmaceutical Statistics 2006; 16(5):657-677. DOI: 10.1080/ 10543400600860469.
    • (2006) Journal of Biopharmaceutical Statistics , vol.16 , Issue.5 , pp. 657-677
    • Thomas, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.