메뉴 건너뛰기




Volumn , Issue , 2010, Pages 100-108

Sophisticated ROP prediction technologies based on neural network delivers accurate drill time results

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; DRILLING DATA; DRILLING PERFORMANCE; ENGINEERING DECISIONS; HIGH QUALITY; HOLE SIZE; MUD PROPERTIES; NETWORK CAPABILITY; OFFSET WELLS; RATE OF PENETRATION; ROCK STRENGTH; SIMPLE ALGORITHM; WELL PLANNING;

EID: 79953119331     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (33)

References (18)
  • 5
    • 79953097864 scopus 로고    scopus 로고
    • Artificial Neural Networks and High-Speed Resistivity Modeling... Powerful New Exploration and Development Tools
    • May/June
    • Arbogast, J.S., Franklin, M.H.: "Artificial Neural Networks and High-Speed Resistivity Modeling ... Powerful New Exploration and Development Tools" Hart's Petroleum Engineer International Magazine, May/June, 1999.
    • (1999) Hart's Petroleum Engineer International Magazine
    • Arbogast, J.S.1    Franklin, M.H.2
  • 7
    • 0029228674 scopus 로고    scopus 로고
    • Predicting Production Using a Neural Network (Artificial Intelligence Beats Human Intelligence)
    • paper SPE 30202 presented at the
    • Boomer, R.J.: "Predicting Production Using a Neural Network (Artificial Intelligence Beats Human Intelligence)" paper SPE 30202 presented at the SPE Petroleum Computer Conference, Houston, Texas, 11-14 June, 1995.
    • SPE Petroleum Computer Conference, Houston, Texas, 11-14 June, 1995
    • Boomer, R.J.1
  • 13
    • 79953074735 scopus 로고    scopus 로고
    • Method for Determining Preferred Drill Bit Design Parameters and Drilling Parameters Using a Trained Artificial Neural Network, and Methods for Training the Artificial Neural Network
    • US Patent 6,424,919 B1, July 23
    • Moran, D.P., Robertson, J.A.: "Method for Determining Preferred Drill Bit Design Parameters and Drilling Parameters Using a Trained Artificial Neural Network, and Methods for Training the Artificial Neural Network" US Patent 6,424,919 B1, July 23, 2002.
    • (2002)
    • Moran, D.P.1    Robertson, J.A.2
  • 15
    • 22344432313 scopus 로고    scopus 로고
    • Unique ROP Predictor Using Bit-specific Coefficient of Sliding Friction and Mechanical Efficiency as a Function of Confined Compressive Strength Impacts Drilling Performance
    • paper SPE/IADC presented at the
    • Caicedo, H., Calhoun, W.M., Ewy, R.T., "Unique ROP Predictor Using Bit-specific Coefficient of Sliding Friction and Mechanical Efficiency as a Function of Confined Compressive Strength Impacts Drilling Performance" paper SPE/IADC presented at the SPE/IADC Drilling Conference, Amsterdam, The Netherlands, 23-25 February 2005.
    • SPE/IADC Drilling Conference, Amsterdam, the Netherlands, 23-25 February 2005
    • Caicedo, H.1    Calhoun, W.M.2    Ewy, R.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.