메뉴 건너뛰기




Volumn 2, Issue , 2010, Pages 1123-1130

An intelligent system to detect drilling problems through drilled cuttings return analysis

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE TECHNIQUES; ARTIFICIAL NEURAL NETWORK; BAYESIAN CLASSIFIER; BOREHOLE WALL; DATA ANALYSIS; DATA ANALYSIS SYSTEM; DOWNHOLES; DRILLED CUTTINGS; DRILLING PROBLEMS; DRILLING PROCESS; FIELD TEST; GEOLOGICAL ANALYSIS; HIGH DEFINITION; MATERIAL BALANCE; MULTI-LAYER PERCEPTRONS; NON-INTRUSIVE; OFFSHORE FLOATING; SHALE SHAKERS; SURFACE SYSTEMS;

EID: 77954186253     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (18)

References (25)
  • 4
    • 33846681070 scopus 로고    scopus 로고
    • Risk assessment of drilling and completion operations in petroleum wells using a Monte Carlo and a neural network approach
    • ACM
    • Coelho, D.K. et al., Risk assessment of drilling and completion operations in petroleum wells using a monte carlo and a neural network approach, Proceedings of the 37th Conference on Winter simulation, pp. 1892-1897, ACM, 2005.
    • (2005) Proceedings of the 37th Conference on Winter Simulation , pp. 1892-1897
    • Coelho, D.K.1
  • 7
    • 26444573178 scopus 로고    scopus 로고
    • Which is the best multiclass svm method? An empirical study
    • Duan, K. and Keerthi, S.S., Which is the best multiclass svm method? an empirical study. Multiple Classifier Systems, pages 278-285, 2005.
    • (2005) Multiple Classifier Systems , pp. 278-285
    • Duan, K.1    Keerthi, S.S.2
  • 10
    • 74549182928 scopus 로고    scopus 로고
    • Monitoring of drilling process with the application of acoustic signal
    • Technical University of Kosice, Slovakia
    • Frantiek, K., Jozef, F. and Milan, L., Monitoring of drilling process with the application of acoustic signal, Acta Montanistica Slovaca, vol. 5, no. 3, pp. 237-240. Technical University of Kosice, Slovakia, 2000.
    • (2000) Acta Montanistica Slovaca , vol.5 , Issue.3 , pp. 237-240
    • Frantiek, K.1    Jozef, F.2    Milan, L.3
  • 11
    • 0018466704 scopus 로고
    • Statistical and structural approaches to texture
    • IEEE Press
    • Haralick, R.M., Statistical and structural approaches to texture, Proceedings of IEEE, vol. 67, no. 5, pp. 786-804. IEEE Press, 1979.
    • (1979) Proceedings of IEEE , vol.67 , Issue.5 , pp. 786-804
    • Haralick, R.M.1
  • 12
    • 34249074102 scopus 로고    scopus 로고
    • Monitoring Hole Quality in a Drilling Process Using a Fuzzy Subtractive Clustering-basedqa System Identification Method
    • Hayajneh, M.T., Monitoring Hole Quality in a Drilling Process Using a Fuzzy Subtractive Clustering-basedqa System Identification Method, Journal of Testing and Evaluation, vol. 35, no. 3, 2007.
    • (2007) Journal of Testing and Evaluation , vol.35 , Issue.3
    • Hayajneh, M.T.1
  • 15
    • 0007169079 scopus 로고
    • Monitoring and analysis of cutting-packing procedures to explain well performance
    • Society of Petroleum Technology, Richardson, Texas
    • Mcleod, H.O. and Minarovic, M.J., Monitoring and analysis of cutting-packing procedures to explain well performance, Journal of Petroleum technology, vol. 46, no. 10, pp. 878-883. Society of Petroleum Technology, Richardson, Texas, 1994.
    • (1994) Journal of Petroleum Technology , vol.46 , Issue.10 , pp. 878-883
    • Mcleod, H.O.1    Minarovic, M.J.2
  • 19
    • 33749262644 scopus 로고    scopus 로고
    • How boosting the margin can also boost classifier complexity
    • ICML 2006 - Proceedings of the 23rd International Conference on Machine Learning
    • Reyzin, L. and Schapire, R.E., How boosting the margin can also boost classifier complexity. In Proceedings of the 23th International Conference on Machine learning, pages 753-760, New York, USA, ACM Press, 2006. (Pubitemid 44483002)
    • (2006) ICML 2006 - Proceedings of the 23rd International Conference on Machine Learning , vol.2006 , pp. 753-760
    • Reyzin, L.1    Schapire, R.E.2
  • 25
    • 0036498959 scopus 로고    scopus 로고
    • Application of artificial neural networks to optimum bit selection
    • Elsevier
    • Yilmaz, S., Demircioglu, C. and Akin, S., Application of artificial neural networks to optimum bit selection, Computers & Geosciences, vol. 28, no. 2, pp. 261-269, Elsevier, 2002.
    • (2002) Computers & Geosciences , vol.28 , Issue.2 , pp. 261-269
    • Yilmaz, S.1    Demircioglu, C.2    Akin, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.