메뉴 건너뛰기




Volumn 56, Issue 1, 2011, Pages 140-148

Extracting information from functional connectivity maps via function-on-scalar regression

Author keywords

Functional connectivity; Functional data analysis; Model selection; Quantile regression; Resting state; Seed region

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; BRAIN FUNCTION; BRAIN MAPPING; FUNCTIONAL MAGNETIC RESONANCE IMAGING; IMAGE ANALYSIS; IMAGE PROCESSING; NEUROIMAGING; PRIORITY JOURNAL; REGRESSION ANALYSIS;

EID: 79953062522     PISSN: 10538119     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2011.01.071     Document Type: Article
Times cited : (10)

References (42)
  • 2
    • 0033933649 scopus 로고    scopus 로고
    • Voxel-based morphometry-the methods
    • Ashburner J., Friston K.J. Voxel-based morphometry-the methods. NeuroImage 2000, 11:805-821.
    • (2000) NeuroImage , vol.11 , pp. 805-821
    • Ashburner, J.1    Friston, K.J.2
  • 3
    • 0029166541 scopus 로고
    • Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
    • Biswal B., Yetkin F.Z., Haughton V.M., Hyde J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 1995, 34:537-541.
    • (1995) Magn. Reson. Med. , vol.34 , pp. 537-541
    • Biswal, B.1    Yetkin, F.Z.2    Haughton, V.M.3    Hyde, J.S.4
  • 6
    • 55349134571 scopus 로고    scopus 로고
    • Nonparametric quantile estimations for dynamic smooth coefficient models
    • Cai Z., Xu X. Nonparametric quantile estimations for dynamic smooth coefficient models. J. Am. Stat. Assoc. 2008, 103:1595-1608.
    • (2008) J. Am. Stat. Assoc. , vol.103 , pp. 1595-1608
    • Cai, Z.1    Xu, X.2
  • 7
    • 67651030061 scopus 로고    scopus 로고
    • Effects of model-based physiological noise correction on default mode network anti-correlations and correlations
    • Chang C., Glover G.H. Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. Neuroimage 2009, 47:1448-1459.
    • (2009) Neuroimage , vol.47 , pp. 1448-1459
    • Chang, C.1    Glover, G.H.2
  • 8
    • 0030175198 scopus 로고    scopus 로고
    • AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
    • Cox R.W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 1996, 29(3):162-173.
    • (1996) Comput. Biomed. Res. , vol.29 , Issue.3 , pp. 162-173
    • Cox, R.W.1
  • 15
    • 0036185675 scopus 로고    scopus 로고
    • Functional mixed effects models
    • Guo W. Functional mixed effects models. Biometrics 2002, 58:121-128.
    • (2002) Biometrics , vol.58 , pp. 121-128
    • Guo, W.1
  • 17
    • 0035384136 scopus 로고    scopus 로고
    • A global optimisation method for robust affine registration of brain images
    • Jenkinson M., Smith S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 2001, 5(2):143-156.
    • (2001) Med. Image Anal. , vol.5 , Issue.2 , pp. 143-156
    • Jenkinson, M.1    Smith, S.2
  • 18
    • 0036425968 scopus 로고    scopus 로고
    • Improved optimization for the robust and accurate linear registration and motion correction of brain images
    • Jenkinson M., Bannister P., Brady M., Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002, 17(2):825-841.
    • (2002) Neuroimage , vol.17 , Issue.2 , pp. 825-841
    • Jenkinson, M.1    Bannister, P.2    Brady, M.3    Smith, S.4
  • 20
    • 84925105967 scopus 로고    scopus 로고
    • Cambridge University Press, New York
    • Koenker R. Quantile Regression 2005, Cambridge University Press, New York.
    • (2005) Quantile Regression
    • Koenker, R.1
  • 22
    • 0001652263 scopus 로고
    • Quantile smoothing splines
    • Koenker R., Ng P., Portnoy S. Quantile smoothing splines. Biometrika 1994, 81:673-680.
    • (1994) Biometrika , vol.81 , pp. 673-680
    • Koenker, R.1    Ng, P.2    Portnoy, S.3
  • 23
    • 24044470614 scopus 로고    scopus 로고
    • Clustering of time series data-a survey
    • Liao T.W. Clustering of time series data-a survey. Pattern Recognit. 2005, 38:1857-1874.
    • (2005) Pattern Recognit. , vol.38 , pp. 1857-1874
    • Liao, T.W.1
  • 25
    • 57649158932 scopus 로고    scopus 로고
    • The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?
    • Murphy K., Birn R.M., Handwerker D.A., Jones T.B., Bandettini P.A. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?. Neuroimage 2009, 44:893-905.
    • (2009) Neuroimage , vol.44 , pp. 893-905
    • Murphy, K.1    Birn, R.M.2    Handwerker, D.A.3    Jones, T.B.4    Bandettini, P.A.5
  • 26
    • 0036136472 scopus 로고    scopus 로고
    • Nonparametric permutation tests for functional neuroimaging: a primer with examples
    • Nichols T.E., Holmes A.P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 2001, 15:1-25.
    • (2001) Hum. Brain Mapp. , vol.15 , pp. 1-25
    • Nichols, T.E.1    Holmes, A.P.2
  • 27
    • 79951480123 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austria, URL, R Development Core Team.
    • R Development Core Team R: A Language and Environment for Statistical Computing 2010, R Foundation for Statistical Computing, Vienna, Austria, URL. http://www.R-project.org.
    • (2010) R: A Language and Environment for Statistical Computing
  • 31
    • 77956302041 scopus 로고    scopus 로고
    • Fast function-on-scalar regression with penalized basis expansions
    • article 28
    • Reiss P.T., Huang L., Mennes M. Fast function-on-scalar regression with penalized basis expansions. Int. J. Biostat. 2010, 6(1). article 28.
    • (2010) Int. J. Biostat. , vol.6 , Issue.1
    • Reiss, P.T.1    Huang, L.2    Mennes, M.3
  • 32
    • 0001597980 scopus 로고
    • Estimating the mean and covariance structure nonparametrically when the data are curves
    • Rice J.A., Silverman B.W. Estimating the mean and covariance structure nonparametrically when the data are curves. J. R. Stat. Soc. B 1991, 53:233-243.
    • (1991) J. R. Stat. Soc. B , vol.53 , pp. 233-243
    • Rice, J.A.1    Silverman, B.W.2
  • 34
    • 0036921633 scopus 로고    scopus 로고
    • Selecting the number of knots for penalized splines
    • Ruppert D. Selecting the number of knots for penalized splines. J. Comput. Graph. Stat. 2002, 11:735-757.
    • (2002) J. Comput. Graph. Stat. , vol.11 , pp. 735-757
    • Ruppert, D.1
  • 36
    • 74049156284 scopus 로고    scopus 로고
    • Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization
    • Van Dijk K.R.A., Hedden T., Venkataraman A., Evans K.C., Lazar S.W., Buckner R.L. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J. Neurophysiol. 2010, 103:297-321.
    • (2010) J. Neurophysiol. , vol.103 , pp. 297-321
    • Van Dijk, K.R.A.1    Hedden, T.2    Venkataraman, A.3    Evans, K.C.4    Lazar, S.W.5    Buckner, R.L.6
  • 37
    • 13444311694 scopus 로고    scopus 로고
    • Functional principal component analysis of fMRI data
    • Viviani R., Grön G., Spitzer M. Functional principal component analysis of fMRI data. Hum. Brain Mapp. 2005, 24:109-129.
    • (2005) Hum. Brain Mapp. , vol.24 , pp. 109-129
    • Viviani, R.1    Grön, G.2    Spitzer, M.3
  • 39
    • 1942446346 scopus 로고    scopus 로고
    • Regional homogeneity approach to fMRI data analysis
    • Zang Y., Jiang T., Lu Y., He Y., Tian L. Regional homogeneity approach to fMRI data analysis. Neuroimage 2004, 22:394-400.
    • (2004) Neuroimage , vol.22 , pp. 394-400
    • Zang, Y.1    Jiang, T.2    Lu, Y.3    He, Y.4    Tian, L.5
  • 40
    • 67651020759 scopus 로고    scopus 로고
    • MATLAB toolbox for functional connectivity
    • Zhou D., Thompson W.K., Siegle G. MATLAB toolbox for functional connectivity. Neuroimage 2009, 47:1590-1607.
    • (2009) Neuroimage , vol.47 , pp. 1590-1607
    • Zhou, D.1    Thompson, W.K.2    Siegle, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.