메뉴 건너뛰기




Volumn 74, Issue 9, 2011, Pages 1411-1417

Exploiting local structure in Boltzmann machines

Author keywords

Generative models; Low level vision; Restricted Boltzmann machines

Indexed keywords

BOLTZMANN MACHINES; GENERATIVE MODEL; HIDDEN VARIABLE; IMAGE DATA; IMAGE STATISTICS; LATERAL INTERACTIONS; LOCAL STRUCTURE; LONG-RANGE DEPENDENCIES; LOW-LEVEL VISION; RESTRICTED BOLTZMANN MACHINE; RESTRICTED BOLTZMANN MACHINES;

EID: 79953035087     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.12.014     Document Type: Article
Times cited : (5)

References (18)
  • 1
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: foundations of harmony theory
    • MIT Press, Cambridge
    • Smolensky P. Information processing in dynamical systems: foundations of harmony theory. Parallel Distributed Processing, Chapter 6 1986, vol. 1:194-281. MIT Press, Cambridge.
    • (1986) Parallel Distributed Processing, Chapter 6 , vol.1 , pp. 194-281
    • Smolensky, P.1
  • 2
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G., Osindero S., Teh W. A fast learning algorithm for deep belief nets. Neural Computation 2006, 18(7):1527-1554.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, W.3
  • 3
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton G. Training products of experts by minimizing contrastive divergence. Neural Computation 2002, 14(8):1771-1800.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.1
  • 4
    • 0032681789 scopus 로고    scopus 로고
    • Statistics of natural images and models, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
    • J. Huang, D. Mumford, Statistics of natural images and models, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1999, pp. 1541-1547.
    • (1999) , pp. 1541-1547
    • Huang, J.1    Mumford, D.2
  • 6
    • 79953038910 scopus 로고    scopus 로고
    • Learning sparse topographic representations with products of student-t distributions, in: Advances in Neural Information Processing Systems (NIPS)
    • M. Welling, G. Hinton, S. Osindero, Learning sparse topographic representations with products of student-t distributions, in: Advances in Neural Information Processing Systems (NIPS), 2002, pp. 1359-1366.
    • (2002) , pp. 1359-1366
    • Welling, M.1    Hinton, G.2    Osindero, S.3
  • 8
    • 0034920427 scopus 로고    scopus 로고
    • A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images
    • Hyvärinen A., Hoyer P. A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Journal on Vision Research 2001, 41(18):2413-2423.
    • (2001) Journal on Vision Research , vol.41 , Issue.18 , pp. 2413-2423
    • Hyvärinen, A.1    Hoyer, P.2
  • 9
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 1998, 86(11):2278-2324.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 12
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: International Conference on Machine Learning (ICML)
    • H. Lee, R. Grosse, R. Ranganath, Y. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: International Conference on Machine Learning (ICML), 2009, p. 77.
    • (2009) , pp. 77
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, Y.4
  • 14
    • 79953040639 scopus 로고    scopus 로고
    • Learning deep generative models. Ph.D. Thesis, University of Toronto
    • R. Salakhutdinov, Learning deep generative models. Ph.D. Thesis, University of Toronto, 2009.
    • (2009)
    • Salakhutdinov, R.1
  • 15
    • 79953037350 scopus 로고    scopus 로고
    • Learning and evaluating Boltzmann machines. Technical Report, University of Toronto
    • R. Salakhutdinov, Learning and evaluating Boltzmann machines. Technical Report, University of Toronto, 2008.
    • (2008)
    • Salakhutdinov, R.1
  • 16
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted Boltzmann machines using approximations to the likelihood gradient, in: International Conference on Machine Learning (ICML)
    • T. Tieleman, Training restricted Boltzmann machines using approximations to the likelihood gradient, in: International Conference on Machine Learning (ICML), 2008, pp. 1064-1071.
    • (2008) , pp. 1064-1071
    • Tieleman, T.1
  • 17
    • 84862286946 scopus 로고    scopus 로고
    • Deep Boltzmann machines, in: Proceedings of Conference on Artificial Intelligence and Statistics
    • R. Salakhutdinov, G. Hinton, Deep Boltzmann machines, in: Proceedings of Conference on Artificial Intelligence and Statistics, vol. 5, 2009, pp. 448-455.
    • (2009) , vol.5 , pp. 448-455
    • Salakhutdinov, R.1    Hinton, G.2
  • 18
    • 77949604798 scopus 로고    scopus 로고
    • Large-scale object recognition with CUDA-accelerated hierarchical neural networks, in: Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems
    • R. Uetz, S. Behnke, Large-scale object recognition with CUDA-accelerated hierarchical neural networks, in: Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems, 2009.
    • (2009)
    • Uetz, R.1    Behnke, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.