메뉴 건너뛰기




Volumn 73, Issue , 2011, Pages 803-807

A Hybrid Neural Network and Gravitational Search Algorithm (HNNGSA) Method to Solve well known Wessinger's Equation

Author keywords

Gravitational Search Algorithm (GSR); Neural Networks; Wessinger's Equation

Indexed keywords

ADJUSTABLE PARAMETERS; ANALYTIC SOLUTION; APPROXIMATION SOLUTION; HYBRID NEURAL NETWORKS; MULTI-LAYER PERCEPTRON NEURAL NETWORKS; SEARCH ALGORITHMS; WESSINGER'S EQUATION;

EID: 79953016203     PISSN: 2010376X     EISSN: 20103778     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (31)

References (14)
  • 1
    • 69649096705 scopus 로고    scopus 로고
    • Swarm intelligence for the problem of non-linear ordinary differential equations and its application to well known Wessinger's equation
    • J.A. Khan, R.M.A. Zahoor, I.M. Qureshi, Swarm intelligence for the problem of non-linear ordinary differential equations and its application to well known Wessinger's equation. European Journal of scientific research. 2009; 34(4): 514-525.
    • (2009) European Journal of Scientific Research , vol.34 , Issue.4 , pp. 514-525
    • Khan, J.A.1    Zahoor, R.M.A.2    Qureshi, I.M.3
  • 2
    • 0032165970 scopus 로고    scopus 로고
    • Artificial neural networks for solving ordinary and partitial differential equations
    • I.E. Lagris, A. Likas, D.I. Fotiadis. Artificial neural networks for solving ordinary and partitial differential equations. IEEE Transactions on Neural Networks. 1998; 9 (5): 987-1000.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.5 , pp. 987-1000
    • Lagris, I.E.1    Likas, A.2    Fotiadis, D.I.3
  • 4
    • 0043004865 scopus 로고
    • Neural algorithms for solving differential equations
    • H. Lee, I.S. Kang, Neural algorithms for solving differential equations, Journal of Computational Physics 1990; 91: 110-131.
    • (1990) Journal of Computational Physics , vol.91 , pp. 110-131
    • Lee, H.1    Kang, I.S.2
  • 5
    • 38149146627 scopus 로고
    • The numerical solution of linear ordinary differential equations by feedforward neural networks
    • A.J. Meade Jr, A.A. Fernandez, The numerical solution of linear ordinary differential equations by feedforward neural networks, Mathematical and Computer Modelling. 1994; 19 (12): 1-25.
    • (1994) Mathematical and Computer Modelling , vol.19 , Issue.12 , pp. 1-25
    • Meade Jr., A.J.1    Fernandez, A.A.2
  • 6
    • 33845415634 scopus 로고    scopus 로고
    • Numerical solution for high order differential equations using a hybrid neural network-Optimization method
    • A. Malek, R.S. Beidokhti, Numerical solution for high order differential equations using a hybrid neural network-Optimization method. Applied Mathematics and Computation. 2006; 183: 260-271.
    • (2006) Applied Mathematics and Computation , vol.183 , pp. 260-271
    • Malek, A.1    Beidokhti, R.S.2
  • 8
    • 64049096918 scopus 로고    scopus 로고
    • Pitch angle control in wind turbines above the rated wind speed by multi-layer percepteron and Radial basis function neural networks
    • A.S. Yilmaz, Z. Ozer, Pitch angle control in wind turbines above the rated wind speed by multi-layer percepteron and Radial basis function neural networks. Expert Systems with Applications. 2009; 36: 9767-9775.
    • (2009) Expert Systems with Applications , vol.36 , pp. 9767-9775
    • Yilmaz, A.S.1    Ozer, Z.2
  • 9
    • 0343062497 scopus 로고
    • Neural Networks for Identification
    • Springer Verlag, London
    • D.T. Pham, X. Liu, Neural Networks for Identification, Prediction and Control. Springer Verlag, London. 1995.
    • (1995) Prediction and Control
    • Pham, D.T.1    Liu, X.2
  • 10
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • R.P. Lippmann, An introduction to computing with neural nets, IEEE ASSP Magazine 1987; 4-22.
    • (1987) IEEE ASSP Magazine , pp. 4-22
    • Lippmann, R.P.1
  • 11
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornick, M. Stinchcombe, H. white, Multilayer feedforward networks are universal approximators, Neural Networks 1989; 2 (5): 359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornick, K.1    Stinchcombe, M.2    White, H.3
  • 12
    • 77954309362 scopus 로고    scopus 로고
    • The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data
    • M.A. Behrang, E. Assareh, A. Ghanbarzadeh, A.R. Noghrehabadi, The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Solar Energy 2010; 84: 1468-1480.
    • (2010) Solar Energy , vol.84 , pp. 1468-1480
    • Behrang, M.A.1    Assareh, E.2    Ghanbarzadeh, A.3    Noghrehabadi, A.R.4
  • 14
    • 78649656030 scopus 로고    scopus 로고
    • Filter modeling using gravitational search algorithm
    • doi:10.1016/j.engappai.2010.05.007
    • E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, Filter modeling using gravitational search algorithm. Energy policy; doi:10.1016/j.engappai.2010.05.007.
    • Energy Policy
    • Rashedi, E.1    Nezamabadi-Pour, H.2    Saryazdi, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.