메뉴 건너뛰기




Volumn 34, Issue 4, 2009, Pages 514-525

Swarm Intelligence for the problems of non-linear ordinary differential equations and its application to well known Wessinger's equation

Author keywords

Artificial neural networks; Hybrid intelligent Algorithm; Non linear ODEs; Numerical methods; Practical swarm optimization; Unsupervised Learning

Indexed keywords


EID: 69649096705     PISSN: 1450216X     EISSN: 1450202X     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (14)

References (27)
  • 5
    • 0000443213 scopus 로고    scopus 로고
    • On solving the initial-value problems using the differential transform method
    • MJ. Jang, CL. Chen, YC. Liu, on solving the initial-value problems using the differential transform method, J. Appl Math Comput 115 (2000) 145-160.
    • (2000) J. Appl Math Comput , vol.115 , pp. 145-160
    • Jang, M.J.1    Chen, C.L.2    Liu, Y.C.3
  • 8
    • 0001742775 scopus 로고
    • Computational complexity and observation of physical signals
    • C. Saloma, Computational complexity and observation of physical signals, J. Appl. Phys. 74 (1993) 5314-5319.
    • (1993) J. Appl. Phys. , vol.74 , pp. 5314-5319
    • Saloma, C.1
  • 9
    • 35248854250 scopus 로고    scopus 로고
    • Solving differential equation with constant coefficient by using radial basis function
    • M.H Li, G.J Wang, Solving differential equation with constant coefficient by using radial basis function, J. Shen Yang Institute of Chemical Technology 20 (2006) 68-72
    • (2006) J. Shen Yang Institute of Chemical Technology , vol.20 , pp. 68-72
    • Li, M.H.1    Wang, G.J.2
  • 10
    • 0242621921 scopus 로고    scopus 로고
    • Neural network for solving systems of nonlinear equations
    • H.M Zhao, K.Z. Chen, Neural network for solving systems of nonlinear equations, Acta Electronica 30 (2002) 601-604.
    • (2002) Acta Electronica , vol.30 , pp. 601-604
    • Zhao, H.M.1    Chen, K.Z.2
  • 11
    • 38149146627 scopus 로고
    • The numerical solution of linear ordinary differential equation by feedforward neural network
    • A.J Meada, A.A Fernandez, The numerical solution of linear ordinary differential equation by feedforward neural network, Math Compute Modeling 19 (1994) 1-25.
    • (1994) Math Compute Modeling , vol.19 , pp. 1-25
    • Meada, A.J.1    Fernandez, A.A.2
  • 12
    • 0032002859 scopus 로고    scopus 로고
    • Characterizing the dynamics of constrained physical systems with unsupervised neural network
    • C. Monterola, C. Saloma, Characterizing the dynamics of constrained physical systems with unsupervised neural network, Phys Rev E 57 (1998) 1247R-1250R.
    • (1998) Phys Rev E , vol.57
    • Monterola, C.1    Saloma, C.2
  • 15
    • 0038246384 scopus 로고    scopus 로고
    • Solving differential equations with unsupervised neural networks
    • Daniel R. Rarisi et al. solving differential equations with unsupervised neural networks. Chemical engineering and processing, 42 (2003) pp 715-721.
    • (2003) Chemical engineering and processing , vol.42 , pp. 715-721
    • Daniel, R.1    Rarisi2    et al3
  • 16
    • 0035575919 scopus 로고    scopus 로고
    • Neural Network Method for solving the partial Differential Equations
    • Lucie P. Aarts and Peter Van Der Veer., Neural Network Method for solving the partial Differential Equations. Neural Processing Letters 14 (2001) 261-271.
    • (2001) Neural Processing Letters , vol.14 , pp. 261-271
    • Aarts Lucie, P.1    van der Veer, P.2
  • 17
    • 62949189473 scopus 로고    scopus 로고
    • Multiprocessor Scheduling Using Hybrid Particle Swarm optimization with dynamically varying inertia
    • S.N. Sivanandam and P. Visalakshi, "Multiprocessor Scheduling Using Hybrid Particle Swarm optimization with dynamically varying inertia ", International Journal of Computer Science & Applications Vol. 4 Issue 3, pp 95-106 (2007).
    • (2007) International Journal of Computer Science & Applications , vol.4 , Issue.3 , pp. 95-106
    • Sivanandam, S.N.1    Visalakshi, P.2
  • 18
    • 33645158620 scopus 로고    scopus 로고
    • Multimodal function optimization based on particle swarm optimization
    • april
    • J.H. Seo, C.H. Im, C.G. Heo, J.K. Kim, H.K. Jung and C.G. Lee, "Multimodal function optimization based on particle swarm optimization ", IEEE transaction on magnetic, vol. 42, no.4, april (2006) pp 1095-1098.
    • (2006) IEEE Transaction on Magnetic , vol.42 , Issue.4 , pp. 1095-1098
    • Seo, J.H.1    Im, C.H.2    Heo, C.G.3    Kim, J.K.4    Jung, H.K.5    Lee, C.G.6
  • 20
    • 0023566098 scopus 로고
    • Kolmogorov's mapping neural network existence theorem
    • San Diego CA
    • R. Hetch-Nielsen, Kolmogorov's mapping neural network existence theorem, 1st IEEE inter. Conf. on neural networks, San Diego CA, 3 (1987) 11.
    • (1987) 1st IEEE Inter. Conf. on Neural Networks , vol.3 , pp. 11
    • Hetch-Nielsen, R.1
  • 21
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • K.I. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Networks 2 (1989) 183.
    • (1989) Neural Networks , vol.2 , pp. 183
    • Funahashi, K.I.1
  • 22
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayer feed forward networks
    • K. Hornik, M. Stichcombr, H. White, Universal approximation of an unknown mapping and its derivatives using multilayer feed forward networks, Neural Networks 3 (1990), 551-560.
    • (1990) Neural Networks , vol.3 , pp. 551-560
    • Hornik, K.1    Stichcombr, M.2    White, H.3
  • 27
    • 34547263388 scopus 로고    scopus 로고
    • Simultaneous Perturbation Particle Swarm Optimization
    • Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
    • Yutaka Maeda, and Toru Kuratani, Simultaneous Perturbation Particle Swarm Optimization,IEEE Congress on Evolutionary Computation Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada pp 672-676, 2006.
    • (2006) IEEE Congress on Evolutionary Computation , pp. 672-676
    • Maeda, Y.1    Kuratani, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.