메뉴 건너뛰기




Volumn 133 CCIS, Issue PART 3, 2011, Pages 76-84

RODD: An effective reference-based outlier detection technique for large datasets

Author keywords

Cluster; Outlier detection; Profile; Reference point; Score

Indexed keywords

CLUSTER; OUTLIER DETECTION; PROFILE; REFERENCE POINTS; SCORE;

EID: 79953835698     PISSN: 18650929     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-642-17881-8_8     Document Type: Conference Paper
Times cited : (10)

References (23)
  • 1
    • 0002948319 scopus 로고    scopus 로고
    • Algorithms for mining distance-based outliers in large datasets
    • USA, Morgan Kaufmann, San Francisco
    • Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large datasets. In: Proc of VLDB 1998, USA, pp. 392-403. Morgan Kaufmann, San Francisco (1998).
    • (1998) Proc of VLDB 1998 , pp. 392-403
    • Knorr, E.M.1    Ng, R.T.2
  • 2
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • Washington, D.C., ACM Press, New York
    • Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Proc of ACM SIGMOD on Management of Data, Washington, D.C., pp. 207-216. ACM Press, New York (1993).
    • (1993) Proc of ACM SIGMOD on Management of Data , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.N.3
  • 4
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • AAAI Press, Menlo Park
    • Ester, M., Kriegel, H.-p., Jörg, S., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc of KDD, pp. 226-231. AAAI Press, Menlo Park (1996).
    • (1996) Proc of KDD , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Jörg, S.3    Xu, X.4
  • 8
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artificial Intelligence Review 22, 85-126 (2004).
    • (2004) Artificial Intelligence Review , vol.22 , pp. 85-126
    • Hodge, V.1    Austin, J.2
  • 9
    • 77955874019 scopus 로고    scopus 로고
    • Outlier detection over sliding windows for probabilistic data streams
    • Wang, B., Wang, G.-R., Yu, G.: Outlier detection over sliding windows for probabilistic data streams. Journal of Computer Science and Technology 25(3), 389-400 (2010).
    • (2010) Journal of Computer Science and Technology , vol.25 , Issue.3 , pp. 389-400
    • Wang, B.1    Wang, G.-R.2    Yu, G.3
  • 10
    • 0034133513 scopus 로고    scopus 로고
    • Distance-based outliers: Algorithms and applications
    • Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-based outliers: Algorithms and applications. VLDB Journal 8, 237-253 (2000).
    • (2000) VLDB Journal , vol.8 , pp. 237-253
    • Knorr, E.M.1    Ng, R.T.2    Tucakov, V.3
  • 11
    • 0242456797 scopus 로고    scopus 로고
    • Admit: Anomaly-based data mining for intrusions
    • Sequeira, K., Zaki, M.: Admit: Anomaly-based data mining for intrusions. In: ACM SIGKDD, pp. 386-395 (2002).
    • (2002) ACM SIGKDD , pp. 386-395
    • Sequeira, K.1    Zaki, M.2
  • 12
    • 33244494218 scopus 로고    scopus 로고
    • Distance-based detection and prediction of outliers
    • Angiulli, F., Basta, S., Pizzuti, C.: Distance-based detection and prediction of outliers. IEEE TKDE 18, 145-160 (2006).
    • (2006) IEEE TKDE , vol.18 , pp. 145-160
    • Angiulli, F.1    Basta, S.2    Pizzuti, C.3
  • 15
    • 70349911514 scopus 로고    scopus 로고
    • Local subspace based outlier detection
    • Springer, Heidelberg
    • Agrawal, A.: Local subspace based outlier detection. In: Communication in Computer and Information Science, vol. 40, pp. 149-157. Springer, Heidelberg (2009).
    • (2009) Communication in Computer and Information Science , vol.40 , pp. 149-157
    • Agrawal, A.1
  • 17
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review-part 1: Statistical approaches
    • Markou, M., Singh, S.: Novelty detection: a review-part 1: statistical approaches. Signal Processing 83, 2481-2497 (2003).
    • (2003) Signal Processing , vol.83 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 18
    • 84878080825 scopus 로고    scopus 로고
    • An efficient reference-based approach to outlier detection in large datasets
    • USA, IEEE, Los Alamitos
    • Pei, Y., Zaiane, O.R., Gao, Y.: An efficient reference-based approach to outlier detection in large datasets. In: Proc of ICDM 2006, USA, pp. 478-487. IEEE, Los Alamitos (2006).
    • (2006) Proc of ICDM 2006 , pp. 478-487
    • Pei, Y.1    Zaiane, O.R.2    Gao, Y.3
  • 19
    • 0038663185 scopus 로고    scopus 로고
    • Intrusion detection with unlabeled data using clustering
    • Philadelphia, PA
    • Portnoy, L., Eskin, E., Stolfo, S.: Intrusion detection with unlabeled data using clustering. In: Proc of ACM CSS Workshop on DMAS, Philadelphia, PA, pp. 5-8 (2001).
    • (2001) Proc of ACM CSS Workshop on DMAS , pp. 5-8
    • Portnoy, L.1    Eskin, E.2    Stolfo, S.3
  • 23
    • 77952380096 scopus 로고    scopus 로고
    • Mining distance-based outliers in near linear time with randomization and a simple pruning rule
    • Bay, S., Schwabacher, M.: Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In: Proc of the Ninth ACM SIGKDD, pp. 29-38 (2003).
    • (2003) Proc of the Ninth ACM SIGKDD , pp. 29-38
    • Bay, S.1    Schwabacher, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.