-
1
-
-
0003501215
-
-
Technical Report 917, Norwegian Computing Center, Box 114 Blindern, N-0314 Oslo, Norway
-
Abrahamsen, P. (1997), "A Review of Gaussian Random Fields and Correlation Functions," Technical Report 917, Norwegian Computing Center, Box 114 Blindern, N-0314 Oslo, Norway. [103]
-
(1997)
A Review of Gaussian Random Fields and Correlation Functions
, pp. 103
-
-
Abrahamsen, P.1
-
2
-
-
79952800781
-
-
technical report, University of Cambridge. Available at ArXiv:0904.4891
-
Broderick, T., and Gramacy, R. (2010), "Classification and Categorical Inputs With Treed Gaussian Process Models," technical report, University of Cambridge. Available at ArXiv:0904.4891. [111-113]
-
(2010)
Classification and Categorical Inputs With Treed Gaussian Process Models
, pp. 111-113
-
-
Broderick, T.1
Gramacy, R.2
-
3
-
-
78650683992
-
Particle learning and smoothing
-
105
-
Carvalho, C., Johannes, M., Lopes, H., and Polson, N. (2010), "Particle Learning and Smoothing," Statistical Science, 25 (1), 88-106. [105]
-
(2010)
Statistical Science
, vol.25
, Issue.1
, pp. 88-106
-
-
Carvalho, C.1
Johannes, M.2
Lopes, H.3
Polson, N.4
-
4
-
-
0030221433
-
Neural network exploration using optimal experiment design
-
DOI 10.1016/0893-6080(95)00137-9
-
Cohn, D. A. (1996), "Neural Network Exploration Using Optimal Experimental Design," Neural Networks, 9 (6), 1071-1083. [103] (Pubitemid 26353992)
-
(1996)
Neural Networks
, vol.9
, Issue.6
, pp. 1071-1083
-
-
Cohn, D.A.1
-
5
-
-
21144461956
-
A note on the updating of regression estimates
-
107
-
Escobar, L. A., and Moser, E. B. (1993), "A Note on the Updating of Regression Estimates," The American Statistician, 47 (3), 192-194. [107]
-
(1993)
The American Statistician
, vol.47
, Issue.3
, pp. 192-194
-
-
Escobar, L.A.1
Moser, E.B.2
-
6
-
-
0035648076
-
Following a moving target - Monte Carlo inference for dynamic Bayesian models
-
Gilks, W., and Berzuini, C. (2001), "Following a Moving Target: Monte Carlo Inference for Dynamic Bayesian Models," Journal of the Royal Statistical Society, Ser. B, 63, 127-146. [107] (Pubitemid 33392467)
-
(2001)
Journal of the Royal Statistical Society. Series B: Statistical Methodology
, vol.63
, Issue.1
, pp. 127-146
-
-
Gilks, W.R.1
Berzuini, C.2
-
7
-
-
34547988921
-
-
Ph.D. thesis, University of California, Santa Cruz.108
-
Gramacy, R. B. (2005), "Bayesian Treed Gaussian Process Models," Ph.D. thesis, University of California, Santa Cruz. [104,108]
-
(2005)
Bayesian Treed Gaussian Process Models
, pp. 104
-
-
Gramacy, R.B.1
-
8
-
-
49649128701
-
Tgp: An r package for bayesian nonstationary, semiparametric nonlinear regression and design by treed gaussian process models
-
108
-
Gramacy, R. B. (2007), "tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models," Journal of Statistical Software, 19, 9. [108]
-
(2007)
Journal of Statistical Software
, vol.19
, pp. 9
-
-
Gramacy, R.B.1
-
10
-
-
54949111733
-
Bayesian treed gaussian process models with an application to computer modeling
-
108
-
Gramacy, R. B., and Lee, H. K. H. (2008), "Bayesian Treed Gaussian Process Models With an Application to Computer Modeling," Journal of the American Statistical Association, 103, 1119-1130. [108]
-
(2008)
Journal of the American Statistical Association
, vol.103
, pp. 1119-1130
-
-
Gramacy, R.B.1
Lee, H.K.H.2
-
11
-
-
65349171456
-
Adaptive design and analysis of supercomputer experiment
-
103
-
Gramacy, R. B., and Lee, H. K. H. (2009), "Adaptive Design and Analysis of Supercomputer Experiment," Technometrics, 51 (2), 130-145. [103]
-
(2009)
Technometrics
, vol.51
, Issue.2
, pp. 130-145
-
-
Gramacy, R.B.1
Lee, H.K.H.2
-
12
-
-
77953149906
-
Categorical inputs, sensitivity analysis, optimization and importance tempering with tgp version 2, an R package for treed gaussian process models
-
Gramacy, R. B., and Taddy,M. A. (2010), "Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering With tgp Version 2, an R Package for Treed Gaussian Process Models," Journal of Statistical Software, 33 (6). [114]
-
(2010)
Journal of Statistical Software
, vol.33
, Issue.6
, pp. 114
-
-
Gramacy, R.B.1
Taddy, M.A.2
-
13
-
-
2942619617
-
Space and space-time modeling using process convolutions
-
eds. C. Anderson, V. Barnett, P. C. Chatwin, and A. H. El-Shaarawi, London: Springer-Verlag, 108
-
Higdon, D. (2002), "Space and Space-Time Modeling Using Process Convolutions," in Quantitative Methods for Current Environmental Issues, eds. C. Anderson, V. Barnett, P. C. Chatwin, and A. H. El-Shaarawi, London: Springer-Verlag, pp. 37-56. [108]
-
(2002)
Quantitative Methods for Current Environmental Issues
, pp. 37-56
-
-
Higdon, D.1
-
14
-
-
0000561424
-
Efficient Global Optimization of Expensive Black-Box Functions
-
Jones, D., Schonlau, M., and Welch, W. J. (1998), "Efficient Global Optimization of Expensive Black Box Functions," Journal of Global Optimization, 13, 455-492. [103,113] (Pubitemid 128507405)
-
(1998)
Journal of Global Optimization
, vol.13
, Issue.4
, pp. 455-492
-
-
Jones, D.R.1
Schonlau, M.2
Welch, W.J.3
-
15
-
-
70450181250
-
Multi-class active learning for image classification
-
CA: IEEE Computer Society, 103,115
-
Joshi, A., Porikli, F., and Papanikolopoulos, N. (2009), "Multi-Class Active Learning for Image Classification," in Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, Los Alamitos, CA: IEEE Computer Society, pp. 2372-2379. [103,115]
-
(2009)
Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, Los Alamitos
, pp. 2372-2379
-
-
Joshi, A.1
Porikli, F.2
Papanikolopoulos, N.3
-
16
-
-
77956180959
-
Easier parallel computing in r with snowfall and sf cluster
-
117
-
Knaus, J., Porzelius, C., Binder, H., and Schwarzer, G. (2009), "Easier Parallel Computing in RWith snowfall and sfCluster," The R Journal, 1 (1), 47-53. [117]
-
(2009)
The R Journal
, vol.1
, Issue.1
, pp. 47-53
-
-
Knaus, J.1
Porzelius, C.2
Binder, H.3
Schwarzer, G.4
-
17
-
-
84950943564
-
Sequential imputations and bayesian missing data problems
-
105
-
Kong, A., Liu, J., and Wong, W. (1994), "Sequential Imputations and Bayesian Missing Data Problems," Journal of the American Statistical Association, 89, 278-288. [105]
-
(1994)
Journal of the American Statistical Association
, vol.89
, pp. 278-288
-
-
Kong, A.1
Liu, J.2
Wong, W.3
-
18
-
-
84950943371
-
Blind deconvolution via sequential imputations
-
105
-
Liu, J., and Chen, R. (1995), "Blind Deconvolution via Sequential Imputations," Journal of the American Statistical Association, 90 (430), 567-576. [105]
-
(1995)
Journal of the American Statistical Association
, vol.90
, Issue.430
, pp. 567-576
-
-
Liu, J.1
Chen, R.2
-
19
-
-
0032359151
-
Sequential monte carlo methods for dynamic systems
-
105
-
Liu, J., and Chen, R. (1998), "Sequential Monte Carlo Methods for Dynamic Systems," Journal of the American Statistical Association, 93, 1032-1044. [105]
-
(1998)
Journal of the American Statistical Association
, vol.93
, pp. 1032-1044
-
-
Liu, J.1
Chen, R.2
-
20
-
-
0033466420
-
Sequential importance sampling for nonparametric bayes models: The next generation
-
107
-
MacEachern, S., Clyde,M., and Liu, J. (1999), "Sequential Importance Sampling for Nonparametric BayesModels: The Next Generation," Canadian Journal of Statistics, 27, 251-267. [107]
-
(1999)
Canadian Journal of Statistics
, vol.27
, pp. 251-267
-
-
MacEachern, S.1
Clyde, M.2
Liu, J.3
-
21
-
-
0000695404
-
Information-based objective functions for active data selection
-
102
-
MacKay, D. J. C. (1992), "Information-Based Objective Functions for Active Data Selection," Neural Computation, 4 (4), 589-603. [102]
-
(1992)
Neural Computation
, vol.4
, Issue.4
, pp. 589-603
-
-
MacKay, D.J.C.1
-
22
-
-
4944254628
-
Optimal bayesian design by inhomogeneous Markov chain simulation
-
DOI 10.1198/016214504000001123
-
Müller, P., Sansó, B., and de Iorio, M. (2004), "Optimal Bayesian Design by Inhomogeneous Markov Chain Simulation," Journal of the American Statistical Association, 99 (467), 788-798. [102] (Pubitemid 39332860)
-
(2004)
Journal of the American Statistical Association
, vol.99
, Issue.467
, pp. 788-798
-
-
Muller, P.1
Sanso, B.2
De Iorio, M.3
-
23
-
-
0002628667
-
Regression and classification using gaussian process priors" (with discussion)
-
eds. J. M. Bernardo et al., Oxford, U.K.: Oxford University Press, 102,104, 111,112s
-
Neal, R.M. (1998), "Regression and Classification Using Gaussian Process Priors" (with discussion), in Bayesian Statistics, Vol. 6, eds. J. M. Bernardo et al., Oxford, U.K.: Oxford University Press, pp. 476-501. [102,104, 111,112]
-
(1998)
Bayesian Statistics
, vol.6
, pp. 476-501
-
-
Neal, R.M.1
-
24
-
-
1542427941
-
Filtering via simulation: Auxiliary particle filters
-
105
-
Pitt, M., and Shephard, N. (1999), "Filtering via Simulation: Auxiliary Particle Filters," Journal of the American Statistical Association, 94, 590-599. [105]
-
(1999)
Journal of the American Statistical Association
, vol.94
, pp. 590-599
-
-
Pitt, M.1
Shephard, N.2
-
25
-
-
25444448065
-
-
Cambridge, MA: The MIT Press
-
Rasmussen, C. E., and Williams, C. K. I. (2006), Gaussian Processes for Machine Learning, Cambridge, MA: The MIT Press. [102]
-
(2006)
Gaussian Processes for Machine Learning
, pp. 102
-
-
Rasmussen, C.E.1
Williams, C.K.I.2
-
26
-
-
2442422663
-
-
New York: Springer-Verlag, 108,112
-
Santner, T. J., Williams, B. J., and Notz, W. I. (2003), The Design and Analysis of Computer Experiments, New York: Springer-Verlag. [102,108,112]
-
(2003)
The Design and Analysis of Computer Experiments
, pp. 102
-
-
Santner, T.J.1
Williams, B.J.2
Notz, W.I.3
-
27
-
-
0033726013
-
Gaussian process regression: Active data selection and test point rejection
-
IEEE, 103
-
Seo, S.,Wallat, M., Graepel, T., and Obermayer, K. (2000), "Gaussian Process Regression: Active Data Selection and Test Point Rejection," in Proceedings of the International Joint Conference on Neural Networks, Vol. III, IEEE, pp. 241-246. [103]
-
(2000)
Proceedings of the International Joint Conference on Neural Networks
, vol.3
, pp. 241-246
-
-
Seo Wallat, M.1
Graepel, T.2
Obermayer, K.3
-
29
-
-
70549108846
-
Bayesian guided pattern search for robust local optimization
-
103,114
-
Taddy, M., Lee, H. K. H., Gray, G. A., and Griffin, J. D. (2009), "Bayesian Guided Pattern Search for Robust Local Optimization," Technometrics, 51, 389-401. [103,114]
-
(2009)
Technometrics
, vol.51
, pp. 389-401
-
-
Taddy, M.1
Lee, H.K.H.2
Gray, G.A.3
Griffin, J.D.4
-
30
-
-
0001664021
-
Problems with likelihood estimation of covariance functions of spatial gaussian processes
-
104
-
Warnes, J., and Ripley, B. (1987), "Problems With Likelihood Estimation of Covariance Functions of Spatial Gaussian Processes," Biometrika, 74 (3), 640-642. [104]
-
(1987)
Biometrika
, vol.74
, Issue.3
, pp. 640-642
-
-
Warnes, J.1
Ripley, B.2
-
31
-
-
0034550055
-
Sequential design of computer experiments to minimize integrated response functions
-
Williams, B., Santner, T., and Notz, W. (2000), "Sequential Design of Computer Experiments to Minimize Integrated Response Functions," Statistica Sinica, 10, 1133-1152. [114] (Pubitemid 33209599)
-
(2000)
Statistica Sinica
, vol.10
, Issue.4
, pp. 1133-1152
-
-
Williams, B.J.1
Santner, T.J.2
Notz, W.I.3
|