메뉴 건너뛰기




Volumn 20, Issue 1, 2011, Pages 102-118

Particle learning of gaussian process models for sequential design and optimization

Author keywords

Entropy; Expected improvement; Nonparametric regression and classification; Sequential Monte Carlo

Indexed keywords


EID: 79952811240     PISSN: 10618600     EISSN: None     Source Type: Journal    
DOI: 10.1198/jcgs.2010.09171     Document Type: Article
Times cited : (89)

References (31)
  • 4
    • 0030221433 scopus 로고    scopus 로고
    • Neural network exploration using optimal experiment design
    • DOI 10.1016/0893-6080(95)00137-9
    • Cohn, D. A. (1996), "Neural Network Exploration Using Optimal Experimental Design," Neural Networks, 9 (6), 1071-1083. [103] (Pubitemid 26353992)
    • (1996) Neural Networks , vol.9 , Issue.6 , pp. 1071-1083
    • Cohn, D.A.1
  • 5
    • 21144461956 scopus 로고
    • A note on the updating of regression estimates
    • 107
    • Escobar, L. A., and Moser, E. B. (1993), "A Note on the Updating of Regression Estimates," The American Statistician, 47 (3), 192-194. [107]
    • (1993) The American Statistician , vol.47 , Issue.3 , pp. 192-194
    • Escobar, L.A.1    Moser, E.B.2
  • 7
    • 34547988921 scopus 로고    scopus 로고
    • Ph.D. thesis, University of California, Santa Cruz.108
    • Gramacy, R. B. (2005), "Bayesian Treed Gaussian Process Models," Ph.D. thesis, University of California, Santa Cruz. [104,108]
    • (2005) Bayesian Treed Gaussian Process Models , pp. 104
    • Gramacy, R.B.1
  • 8
    • 49649128701 scopus 로고    scopus 로고
    • Tgp: An r package for bayesian nonstationary, semiparametric nonlinear regression and design by treed gaussian process models
    • 108
    • Gramacy, R. B. (2007), "tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models," Journal of Statistical Software, 19, 9. [108]
    • (2007) Journal of Statistical Software , vol.19 , pp. 9
    • Gramacy, R.B.1
  • 10
    • 54949111733 scopus 로고    scopus 로고
    • Bayesian treed gaussian process models with an application to computer modeling
    • 108
    • Gramacy, R. B., and Lee, H. K. H. (2008), "Bayesian Treed Gaussian Process Models With an Application to Computer Modeling," Journal of the American Statistical Association, 103, 1119-1130. [108]
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 1119-1130
    • Gramacy, R.B.1    Lee, H.K.H.2
  • 11
    • 65349171456 scopus 로고    scopus 로고
    • Adaptive design and analysis of supercomputer experiment
    • 103
    • Gramacy, R. B., and Lee, H. K. H. (2009), "Adaptive Design and Analysis of Supercomputer Experiment," Technometrics, 51 (2), 130-145. [103]
    • (2009) Technometrics , vol.51 , Issue.2 , pp. 130-145
    • Gramacy, R.B.1    Lee, H.K.H.2
  • 12
    • 77953149906 scopus 로고    scopus 로고
    • Categorical inputs, sensitivity analysis, optimization and importance tempering with tgp version 2, an R package for treed gaussian process models
    • Gramacy, R. B., and Taddy,M. A. (2010), "Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering With tgp Version 2, an R Package for Treed Gaussian Process Models," Journal of Statistical Software, 33 (6). [114]
    • (2010) Journal of Statistical Software , vol.33 , Issue.6 , pp. 114
    • Gramacy, R.B.1    Taddy, M.A.2
  • 13
    • 2942619617 scopus 로고    scopus 로고
    • Space and space-time modeling using process convolutions
    • eds. C. Anderson, V. Barnett, P. C. Chatwin, and A. H. El-Shaarawi, London: Springer-Verlag, 108
    • Higdon, D. (2002), "Space and Space-Time Modeling Using Process Convolutions," in Quantitative Methods for Current Environmental Issues, eds. C. Anderson, V. Barnett, P. C. Chatwin, and A. H. El-Shaarawi, London: Springer-Verlag, pp. 37-56. [108]
    • (2002) Quantitative Methods for Current Environmental Issues , pp. 37-56
    • Higdon, D.1
  • 14
    • 0000561424 scopus 로고    scopus 로고
    • Efficient Global Optimization of Expensive Black-Box Functions
    • Jones, D., Schonlau, M., and Welch, W. J. (1998), "Efficient Global Optimization of Expensive Black Box Functions," Journal of Global Optimization, 13, 455-492. [103,113] (Pubitemid 128507405)
    • (1998) Journal of Global Optimization , vol.13 , Issue.4 , pp. 455-492
    • Jones, D.R.1    Schonlau, M.2    Welch, W.J.3
  • 16
    • 77956180959 scopus 로고    scopus 로고
    • Easier parallel computing in r with snowfall and sf cluster
    • 117
    • Knaus, J., Porzelius, C., Binder, H., and Schwarzer, G. (2009), "Easier Parallel Computing in RWith snowfall and sfCluster," The R Journal, 1 (1), 47-53. [117]
    • (2009) The R Journal , vol.1 , Issue.1 , pp. 47-53
    • Knaus, J.1    Porzelius, C.2    Binder, H.3    Schwarzer, G.4
  • 18
    • 84950943371 scopus 로고
    • Blind deconvolution via sequential imputations
    • 105
    • Liu, J., and Chen, R. (1995), "Blind Deconvolution via Sequential Imputations," Journal of the American Statistical Association, 90 (430), 567-576. [105]
    • (1995) Journal of the American Statistical Association , vol.90 , Issue.430 , pp. 567-576
    • Liu, J.1    Chen, R.2
  • 19
    • 0032359151 scopus 로고    scopus 로고
    • Sequential monte carlo methods for dynamic systems
    • 105
    • Liu, J., and Chen, R. (1998), "Sequential Monte Carlo Methods for Dynamic Systems," Journal of the American Statistical Association, 93, 1032-1044. [105]
    • (1998) Journal of the American Statistical Association , vol.93 , pp. 1032-1044
    • Liu, J.1    Chen, R.2
  • 20
    • 0033466420 scopus 로고    scopus 로고
    • Sequential importance sampling for nonparametric bayes models: The next generation
    • 107
    • MacEachern, S., Clyde,M., and Liu, J. (1999), "Sequential Importance Sampling for Nonparametric BayesModels: The Next Generation," Canadian Journal of Statistics, 27, 251-267. [107]
    • (1999) Canadian Journal of Statistics , vol.27 , pp. 251-267
    • MacEachern, S.1    Clyde, M.2    Liu, J.3
  • 21
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • 102
    • MacKay, D. J. C. (1992), "Information-Based Objective Functions for Active Data Selection," Neural Computation, 4 (4), 589-603. [102]
    • (1992) Neural Computation , vol.4 , Issue.4 , pp. 589-603
    • MacKay, D.J.C.1
  • 22
    • 4944254628 scopus 로고    scopus 로고
    • Optimal bayesian design by inhomogeneous Markov chain simulation
    • DOI 10.1198/016214504000001123
    • Müller, P., Sansó, B., and de Iorio, M. (2004), "Optimal Bayesian Design by Inhomogeneous Markov Chain Simulation," Journal of the American Statistical Association, 99 (467), 788-798. [102] (Pubitemid 39332860)
    • (2004) Journal of the American Statistical Association , vol.99 , Issue.467 , pp. 788-798
    • Muller, P.1    Sanso, B.2    De Iorio, M.3
  • 23
    • 0002628667 scopus 로고    scopus 로고
    • Regression and classification using gaussian process priors" (with discussion)
    • eds. J. M. Bernardo et al., Oxford, U.K.: Oxford University Press, 102,104, 111,112s
    • Neal, R.M. (1998), "Regression and Classification Using Gaussian Process Priors" (with discussion), in Bayesian Statistics, Vol. 6, eds. J. M. Bernardo et al., Oxford, U.K.: Oxford University Press, pp. 476-501. [102,104, 111,112]
    • (1998) Bayesian Statistics , vol.6 , pp. 476-501
    • Neal, R.M.1
  • 29
    • 70549108846 scopus 로고    scopus 로고
    • Bayesian guided pattern search for robust local optimization
    • 103,114
    • Taddy, M., Lee, H. K. H., Gray, G. A., and Griffin, J. D. (2009), "Bayesian Guided Pattern Search for Robust Local Optimization," Technometrics, 51, 389-401. [103,114]
    • (2009) Technometrics , vol.51 , pp. 389-401
    • Taddy, M.1    Lee, H.K.H.2    Gray, G.A.3    Griffin, J.D.4
  • 30
    • 0001664021 scopus 로고
    • Problems with likelihood estimation of covariance functions of spatial gaussian processes
    • 104
    • Warnes, J., and Ripley, B. (1987), "Problems With Likelihood Estimation of Covariance Functions of Spatial Gaussian Processes," Biometrika, 74 (3), 640-642. [104]
    • (1987) Biometrika , vol.74 , Issue.3 , pp. 640-642
    • Warnes, J.1    Ripley, B.2
  • 31
    • 0034550055 scopus 로고    scopus 로고
    • Sequential design of computer experiments to minimize integrated response functions
    • Williams, B., Santner, T., and Notz, W. (2000), "Sequential Design of Computer Experiments to Minimize Integrated Response Functions," Statistica Sinica, 10, 1133-1152. [114] (Pubitemid 33209599)
    • (2000) Statistica Sinica , vol.10 , Issue.4 , pp. 1133-1152
    • Williams, B.J.1    Santner, T.J.2    Notz, W.I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.