메뉴 건너뛰기




Volumn 51, Issue 2, 2009, Pages 130-145

Adaptive design and analysis of supercomputer experiments

Author keywords

Active learning; Computer experiment; Nonstationary spatial model; Sequential design; Treed partitioning

Indexed keywords

ACTIVE LEARNING; COMPUTER EXPERIMENT; NONSTATIONARY SPATIAL MODEL; SEQUENTIAL DESIGN; TREED PARTITIONING;

EID: 65349171456     PISSN: 00401706     EISSN: None     Source Type: Journal    
DOI: 10.1198/TECH.2009.0015     Document Type: Article
Times cited : (205)

References (46)
  • 1
    • 0003501215 scopus 로고    scopus 로고
    • A Review of Gaussian Random Fields and Correlation Functions,
    • Technical Report 917, Norwegian Computing Center, Box 114 Blindem, N-0314 Oslo, Norway
    • Abrahamsen, P. (1997), "A Review of Gaussian Random Fields and Correlation Functions," Technical Report 917, Norwegian Computing Center, Box 114 Blindem, N-0314 Oslo, Norway.
    • (1997)
    • Abrahamsen, P.1
  • 2
    • 0000710299 scopus 로고
    • Queries and Concept Learning
    • Angluin, D. (1987), "Queries and Concept Learning," Machine Learning, 2, 319-342.
    • (1987) Machine Learning , vol.2 , pp. 319-342
    • Angluin, D.1
  • 4
    • 33846076337 scopus 로고    scopus 로고
    • Bayesian Wombling: Curvilinear Gradient Assessment Under Spatial Process Models
    • Banerjee, S., and Gelfand, A. E. (2006), "Bayesian Wombling: Curvilinear Gradient Assessment Under Spatial Process Models," Journal of the American Statistical Association, 101, 1487-1501.
    • (2006) Journal of the American Statistical Association , vol.101 , pp. 1487-1501
    • Banerjee, S.1    Gelfand, A.E.2
  • 7
    • 33746577251 scopus 로고    scopus 로고
    • Princeton, NJ: Princeton University Press
    • Bernstein, D. (2005), Matrix Mathematics, Princeton, NJ: Princeton University Press.
    • (2005) Matrix Mathematics
    • Bernstein, D.1
  • 8
    • 84972528615 scopus 로고
    • Bayesian Experimental Design, a Review
    • Chaloner, K., and Verdinelli, I. (1995), "Bayesian Experimental Design, a Review," Statistical Science, 10 (3), 273-304.
    • (1995) Statistical Science , vol.10 , Issue.3 , pp. 273-304
    • Chaloner, K.1    Verdinelli, I.2
  • 11
    • 0003328374 scopus 로고    scopus 로고
    • Neural Network Exploration Using Optimal Experimental Design
    • Cohn, D. A. (1996), "Neural Network Exploration Using Optimal Experimental Design," Advances in Neural Information Processing Systems, 6 (9), 679-686.
    • (1996) Advances in Neural Information Processing Systems , vol.6 , Issue.9 , pp. 679-686
    • Cohn, D.A.1
  • 12
    • 84950437532 scopus 로고
    • Bayesian Prediction of Deterministic Functions, With Applications to the Design and Analysis of Computer Experiments
    • Currin, C., Mitchell, T., Morris, M., and Ylvisaker, D. (1991), "Bayesian Prediction of Deterministic Functions, With Applications to the Design and Analysis of Computer Experiments," Journal of the American Statistical Association, 86, 953-963.
    • (1991) Journal of the American Statistical Association , vol.86 , pp. 953-963
    • Currin, C.1    Mitchell, T.2    Morris, M.3    Ylvisaker, D.4
  • 13
    • 0000228535 scopus 로고    scopus 로고
    • A Bayesian CART Algorithm
    • Denison, D., Mallick, B., and Smith, A. (1998), "A Bayesian CART Algorithm," Biometrika, 85, 363-377.
    • (1998) Biometrika , vol.85 , pp. 363-377
    • Denison, D.1    Mallick, B.2    Smith, A.3
  • 14
    • 49649128701 scopus 로고    scopus 로고
    • tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models
    • 19, 9
    • Gramacy, R. B. (2007), "tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models," Journal of Statistical Software, 19, 9.
    • (2007) Journal of Statistical Software
    • Gramacy, R.B.1
  • 15
    • 54949111733 scopus 로고    scopus 로고
    • Bayesian Treed Gaussian Process Models With an Application to Computer Modeling
    • Gramacy, R. B., and Lee, H. K. H. (2008a), "Bayesian Treed Gaussian Process Models With an Application to Computer Modeling," Journal of the American Statistical Association, 103, 1119-1130.
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 1119-1130
    • Gramacy, R.B.1    Lee, H.K.H.2
  • 17
    • 65349186313 scopus 로고    scopus 로고
    • Gramacy, R. B, and Taddy, M. A, 2008, tgp: Bayesian Treed Gaussian Process Models, R package version 2.1-2
    • Gramacy, R. B., and Taddy, M. A. (2008), tgp: Bayesian Treed Gaussian Process Models, R package version 2.1-2.
  • 18
    • 14344252184 scopus 로고    scopus 로고
    • Parameter Space Exploration With Gaussian Process Trees
    • Omnipress & ACM Digital Library, pp
    • Gramacy, R. B., Lee, H. K. H., and Macready, W (2004), "Parameter Space Exploration With Gaussian Process Trees," in ICML, Omnipress & ACM Digital Library, pp. 353-360.
    • (2004) ICML , pp. 353-360
    • Gramacy, R.B.1    Lee, H.K.H.2    Macready, W.3
  • 19
    • 0035620460 scopus 로고    scopus 로고
    • Finding NearOptimal Bayesian Experimental Designs by Genetic Algorithms
    • Hamada, M., Martz, H., Reese, C., and Wilson, A. (2001), "Finding NearOptimal Bayesian Experimental Designs by Genetic Algorithms," The American Statistian, 55 (3), 175-181.
    • (2001) The American Statistian , vol.55 , Issue.3 , pp. 175-181
    • Hamada, M.1    Martz, H.2    Reese, C.3    Wilson, A.4
  • 20
    • 2942619617 scopus 로고    scopus 로고
    • Space and Space-Time Modeling Using Process Convolutions
    • eds. C. Anderson, V. Barnett, P. C. Chatwin, and A. H. El-Shaarawi, London: Springer, pp
    • Higdon, D. (2002), "Space and Space-Time Modeling Using Process Convolutions," in Quantitative Methods for Current Environmental Issues, eds. C. Anderson, V. Barnett, P. C. Chatwin, and A. H. El-Shaarawi, London: Springer, pp. 37-56.
    • (2002) Quantitative Methods for Current Environmental Issues , pp. 37-56
    • Higdon, D.1
  • 21
    • 65349164802 scopus 로고    scopus 로고
    • Higdon, D., Swall, J., and Kern, J. (1999), Non-Stationary Spatial Modeling, in Bayesian Statistics 6, eds. J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, Oxford: Oxford University Press, pp. 761-768.
    • Higdon, D., Swall, J., and Kern, J. (1999), "Non-Stationary Spatial Modeling," in Bayesian Statistics 6, eds. J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, Oxford: Oxford University Press, pp. 761-768.
  • 23
    • 0000561424 scopus 로고    scopus 로고
    • Efficient Global Optimization of Expensive Black Box Functions
    • Jones, D., Schonlau, M., and Welch, W. J. (1998), "Efficient Global Optimization of Expensive Black Box Functions," Journal of Global Optimization, 13, 455-492.
    • (1998) Journal of Global Optimization , vol.13 , pp. 455-492
    • Jones, D.1    Schonlau, M.2    Welch, W.J.3
  • 24
    • 0007312235 scopus 로고    scopus 로고
    • Predicting the Output From a Complex Computer Code When Fast Approximations Are Available
    • Kennedy, M., and O'Hagan, A. (2000), "Predicting the Output From a Complex Computer Code When Fast Approximations Are Available," Biometrika, 87, 1-13.
    • (2000) Biometrika , vol.87 , pp. 1-13
    • Kennedy, M.1    O'Hagan, A.2
  • 26
    • 3242803554 scopus 로고    scopus 로고
    • Application- Driven Sequential Designs for Simulation Experiments: Kriging Metamodeling
    • Kleijnen, J. P. C., and van Beers, W. C. M. (2004), "Application- Driven Sequential Designs for Simulation Experiments: Kriging Metamodeling," Journal of the Operational Research Society, 55 (9), 876-883.
    • (2004) Journal of the Operational Research Society , vol.55 , Issue.9 , pp. 876-883
    • Kleijnen, J.P.C.1    van Beers, W.C.M.2
  • 27
    • 0000695404 scopus 로고
    • Information-Based Objective Functions for Active Data Selection
    • MacKay, D. J. C (1992), "Information-Based Objective Functions for Active Data Selection," Neural Computation, 4 (4), 589-603.
    • (1992) Neural Computation , vol.4 , Issue.4 , pp. 589-603
    • MacKay, D.J.C.1
  • 28
    • 0018468345 scopus 로고
    • A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
    • McKay, M. D., Conover, W. J., and Beckman, R. J. (1979), "A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code," Technometrics, 21, 239-245.
    • (1979) Technometrics , vol.21 , pp. 239-245
    • McKay, M.D.1    Conover, W.J.2    Beckman, R.J.3
  • 30
    • 0004220749 scopus 로고    scopus 로고
    • Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification,
    • Technical Report CRG-TR-97-2, Dept. of Computer Science, University of Toronto
    • Neal, R. (1997), "Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification," Technical Report CRG-TR-97-2, Dept. of Computer Science, University of Toronto.
    • (1997)
    • Neal, R.1
  • 31
    • 31844440681 scopus 로고    scopus 로고
    • Nonstationary Gaussian Processes for Regression and Spatial Modelling,
    • Ph.D. thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania
    • Paciorek, C (2003), "Nonstationary Gaussian Processes for Regression and Spatial Modelling," Ph.D. thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania.
    • (2003)
    • Paciorek, C.1
  • 32
    • 65349134371 scopus 로고    scopus 로고
    • R Development Core Team (2004), R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing.
    • R Development Core Team (2004), R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing.
  • 34
    • 54949098362 scopus 로고    scopus 로고
    • Sequential Experiment Design for Contour Estimation From Complex Computer Codes
    • Ranjan, P., Bingham, D., and Michailidis, G. (2008), "Sequential Experiment Design for Contour Estimation From Complex Computer Codes," Technometrics, 50, 527-541.
    • (2008) Technometrics , vol.50 , pp. 527-541
    • Ranjan, P.1    Bingham, D.2    Michailidis, G.3
  • 35
    • 2442445239 scopus 로고    scopus 로고
    • Integrated Analysis of Computer and Physical Experiments
    • Reese, C., Wilson, A., Hamada, M., Martz, H., and Ryan, K. (2004), "Integrated Analysis of Computer and Physical Experiments," Technometrics, 46 (2), 153-164.
    • (2004) Technometrics , vol.46 , Issue.2 , pp. 153-164
    • Reese, C.1    Wilson, A.2    Hamada, M.3    Martz, H.4    Ryan, K.5
  • 38
    • 0000832522 scopus 로고
    • Nonparametric Estimation of Nonstationary Spatial Covariance Structure
    • Sampson, P. D., and Guttorp, P. (1992), "Nonparametric Estimation of Nonstationary Spatial Covariance Structure," Journal of the American Statistical Association, 87 (417), 108-119.
    • (1992) Journal of the American Statistical Association , vol.87 , Issue.417 , pp. 108-119
    • Sampson, P.D.1    Guttorp, P.2
  • 40
    • 1642309656 scopus 로고    scopus 로고
    • A Bayesian Coregionalization Approach for Multivariate Pollutant Data
    • Schmidt, A., and Gelfand, A. (2003), "A Bayesian Coregionalization Approach for Multivariate Pollutant Data," Journal of Geophysical ResearchAtmospheres, D24, 8783, 108.
    • (2003) Journal of Geophysical ResearchAtmospheres , vol.D24 , Issue.8783 , pp. 108
    • Schmidt, A.1    Gelfand, A.2
  • 41
    • 0042171731 scopus 로고    scopus 로고
    • Bayesian Inference for Nonstationary Spatial Covariance Structure via Spatial Deformations
    • Schmidt, A. M., and O'Hagan, A. (2003), "Bayesian Inference for Nonstationary Spatial Covariance Structure via Spatial Deformations," Journal of the Royal Statistical Society, Ser. B, 65, 745-758.
    • (2003) Journal of the Royal Statistical Society, Ser. B , vol.65 , pp. 745-758
    • Schmidt, A.M.1    O'Hagan, A.2
  • 45
    • 0032525527 scopus 로고    scopus 로고
    • Constructing and Fitting Models for Cokriging and Multivariate Spatial Prediction
    • Ver Hoef, J., and Barry, R. P. (1998), "Constructing and Fitting Models for Cokriging and Multivariate Spatial Prediction," Journal of Statistical Planning and Inference, 69, 275-294.
    • (1998) Journal of Statistical Planning and Inference , vol.69 , pp. 275-294
    • Ver Hoef, J.1    Barry, R.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.