-
1
-
-
2942705683
-
Myosin-X provides a motor-based link between integrins and the cytoskeleton
-
DOI 10.1038/ncb1136
-
Zhang H, et al. (2004) Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat Cell Biol 6:523-531. (Pubitemid 38786595)
-
(2004)
Nature Cell Biology
, vol.6
, Issue.6
, pp. 523-531
-
-
Zhang, H.1
Berg, J.S.2
Wang, Y.3
Lang, P.4
Sousa, A.D.5
Bhaskar, A.6
Cheney, R.E.7
Stromblad, S.8
-
2
-
-
4644326930
-
A microtubule-binding myosin required for nuclear anchoring and spindle assembly
-
DOI 10.1038/nature02834
-
Weber KL, Sokac AM, Berg JS, Cheney RE, Bement WM (2004) A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431:325-329. (Pubitemid 39265669)
-
(2004)
Nature
, vol.431
, Issue.7006
, pp. 325-329
-
-
Weber, K.L.1
Sokac, A.M.2
Berg, J.S.3
Cheney, R.E.4
Bement, W.M.5
-
3
-
-
33947243354
-
Myosin X regulates netrin receptors and functions in axonal path-finding
-
Zhu XJ, et al. (2007) Myosin X regulates netrin receptors and functions in axonal path-finding. Nat Cell Biol 9:184-192.
-
(2007)
Nat Cell Biol
, vol.9
, pp. 184-192
-
-
Zhu, X.J.1
-
4
-
-
13544251711
-
Myosin XVa and whirlin, two deafness gene products required for hair bundle growth, are located at the stereocilia tips and interact directly
-
DOI 10.1093/hmg/ddi036
-
Delprat B, et al. (2005) Myosin XVa and whirlin, two deafness gene products required for hair bundle growth, are located at the stereocilia tips and interact directly. Hum Mol Genet 14:401-410. (Pubitemid 40220657)
-
(2005)
Human Molecular Genetics
, vol.14
, Issue.3
, pp. 401-410
-
-
Delprat, B.1
Michel, V.2
Goodyear, R.3
Yamasaki, Y.4
Michalski, N.5
El-Amaraoui, A.6
Perfettini, I.7
Legrain, P.8
Richardson, G.9
Hardelin, J.-P.10
Petit, C.11
-
5
-
-
12244277402
-
Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle
-
DOI 10.1093/emboj/cdf689
-
Boeda B, et al. (2002) Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO J 21:6689-6699. (Pubitemid 36014541)
-
(2002)
EMBO Journal
, vol.21
, Issue.24
, pp. 6689-6699
-
-
Boeda, B.1
El-Amraoui, A.2
Bahloul, A.3
Goodyear, R.4
Daviet, L.5
Blanchard, S.6
Perfettini, I.7
Fath, K.R.8
Shorte, S.9
Reiners, J.10
Houdusse, A.11
Legrain, P.12
Wolfrum, U.13
Richardson, G.14
Petit, C.15
-
6
-
-
13544276525
-
Interactions in the network of usher syndrome type 1 proteins
-
DOI 10.1093/hmg/ddi031
-
Adato A, et al. (2005) Interactions in the network of Usher syndrome type 1 proteins. Hum Mol Genet 14:347-356. (Pubitemid 40220653)
-
(2005)
Human Molecular Genetics
, vol.14
, Issue.3
, pp. 347-356
-
-
Adato, A.1
Michel, V.2
Kikkawa, Y.3
Reiners, J.4
Alagramam, K.N.5
Weil, D.6
Yonekawa, H.7
Wolfrum, U.8
El-Amraoui, A.9
Petit, C.10
-
7
-
-
77956146403
-
Cadherin-23, myosin VIIa and harmonin, encoded by Usher syndrome type I genes, form a ternary complex and interact with membrane phospholipids
-
Bahloul A, et al. (2010) Cadherin-23, myosin VIIa and harmonin, encoded by Usher syndrome type I genes, form a ternary complex and interact with membrane phospholipids. Hum Mol Genet 19:3557-3565.
-
(2010)
Hum Mol Genet
, vol.19
, pp. 3557-3565
-
-
Bahloul, A.1
-
8
-
-
25844435342
-
Myosin-X: A molecular motor at the cell's fingertips
-
DOI 10.1016/j.tcb.2005.08.006, PII S0962892405002047
-
Sousa AD, Cheney RE (2005) Myosin-X: A molecular motor at the cell's fingertips. Trends Cell Biol 15:533-539. (Pubitemid 41396435)
-
(2005)
Trends in Cell Biology
, vol.15
, Issue.10
, pp. 533-539
-
-
Sousa, A.D.1
Cheney, R.E.2
-
10
-
-
0036122307
-
Myosin-X is an unconventional myosin that undergoes intrafilopodial motility
-
Berg JS, Cheney RE (2002) Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nat Cell Biol 4:246-250.
-
(2002)
Nat Cell Biol
, vol.4
, pp. 246-250
-
-
Berg, J.S.1
Cheney, R.E.2
-
11
-
-
35548932103
-
The motor activity of myosin-X promotes actin fiber convergence at the cell periphery to initiate filopodia formation
-
DOI 10.1083/jcb.200703178
-
Tokuo H, Mabuchi K, Ikebe M (2007) The motor activity of myosin-X promotes actin fiber convergence at the cell periphery to initiate filopodia formation. J Cell Biol 179:229-238. (Pubitemid 350004887)
-
(2007)
Journal of Cell Biology
, vol.179
, Issue.2
, pp. 229-238
-
-
Tokuo, H.1
Mabuchi, K.2
Ikebe, M.3
-
12
-
-
77953509417
-
Myosin-X induces filopodia by multiple elongation mechanism
-
Watanabe TM, Tokuo H, Gonda K, Higuchi H, Ikebe M (2010) Myosin-X induces filopodia by multiple elongation mechanism. J Biol Chem 285:19605-19614.
-
(2010)
J Biol Chem
, vol.285
, pp. 19605-19614
-
-
Watanabe, T.M.1
Tokuo, H.2
Gonda, K.3
Higuchi, H.4
Ikebe, M.5
-
13
-
-
70349322724
-
Myosin-X is required for cranial neural crest cell migration in Xenopus laevis
-
Hwang YS, Luo T, Xu Y, Sargent TD (2009) Myosin-X is required for cranial neural crest cell migration in Xenopus laevis. Dev Dyn 238:2522-2529.
-
(2009)
Dev Dyn
, vol.238
, pp. 2522-2529
-
-
Hwang, Y.S.1
Luo, T.2
Xu, Y.3
Sargent, T.D.4
-
14
-
-
38049037417
-
Sequential roles for myosin-X in BMP6-dependent filopodial extension, migration, and activation of BMP receptors
-
Pi X, et al. (2007) Sequential roles for myosin-X in BMP6-dependent filopodial extension, migration, and activation of BMP receptors. J Cell Biol 179:1569-1582.
-
(2007)
J Cell Biol
, vol.179
, pp. 1569-1582
-
-
Pi, X.1
-
15
-
-
33947596005
-
Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- And myosin X-dependent manner
-
DOI 10.1038/sj.emboj.7601599, PII 7601599
-
Toyoshima F, Nishida E (2007) Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- and myosin X-dependent manner. EMBO J 26:1487-1498. (Pubitemid 46480928)
-
(2007)
EMBO Journal
, vol.26
, Issue.6
, pp. 1487-1498
-
-
Toyoshima, F.1
Nishida, E.2
-
16
-
-
70349783561
-
Myosin-X is critical for migratory ability of Xenopus cranial neural crest cells
-
Nie S, Kee Y, Bronner-Fraser M (2009) Myosin-X is critical for migratory ability of Xenopus cranial neural crest cells. Dev Biol 335:132-142.
-
(2009)
Dev Biol
, vol.335
, pp. 132-142
-
-
Nie, S.1
Kee, Y.2
Bronner-Fraser, M.3
-
17
-
-
44349179335
-
Filopodia: Molecular architecture and cellular functions
-
DOI 10.1038/nrm2406, PII NRM2406
-
Mattila PK, Lappalainen P (2008) Filopodia: Molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446-454. (Pubitemid 351733400)
-
(2008)
Nature Reviews Molecular Cell Biology
, vol.9
, Issue.6
, pp. 446-454
-
-
Mattila, P.K.1
Lappalainen, P.2
-
18
-
-
68949163497
-
FERM proteins in animal morphogenesis
-
Tepass U (2009) FERM proteins in animal morphogenesis. Curr Opin Genet Dev 19:357-367.
-
(2009)
Curr Opin Genet Dev
, vol.19
, pp. 357-367
-
-
Tepass, U.1
-
19
-
-
34548599699
-
Shroom2, a myosin-VIIa- And actin-binding protein, directly interacts with ZO-1 at tight junctions
-
DOI 10.1242/jcs.002568
-
Etournay R, et al. (2007) Shroom2, a myosin-VIIa- and actin-binding protein, directly interacts with ZO-1 at tight junctions. J Cell Sci 120:2838-2850. (Pubitemid 47394258)
-
(2007)
Journal of Cell Science
, vol.120
, Issue.16
, pp. 2838-2850
-
-
Etournay, R.1
Zwaenepoel, I.2
Perfettini, I.3
Legrain, P.4
Petit, C.5
El-Amraoui, A.6
-
20
-
-
78149425640
-
Phosphorylation of DCC by ERK2 is facilitated by direct docking of the receptor P1 domain to the kinase
-
Ma W, et al. (2010) Phosphorylation of DCC by ERK2 is facilitated by direct docking of the receptor P1 domain to the kinase. Structure 18:1502-1511.
-
(2010)
Structure
, vol.18
, pp. 1502-1511
-
-
Ma, W.1
-
21
-
-
0027440362
-
Protein structure comparison by alignment of distance matrices
-
DOI 10.1006/jmbi.1993.1489
-
Holm L, Sander C (1993) Protein structure comparison by alignment of distance matrices. J Mol Biol 233:123-138. (Pubitemid 23288916)
-
(1993)
Journal of Molecular Biology
, vol.233
, Issue.1
, pp. 123-138
-
-
Holm, L.1
Sander, C.2
-
22
-
-
33645992471
-
Structural basis for NHERF recognition by ERM proteins
-
Terawaki S, Maesaki R, Hakoshima T (2006) Structural basis for NHERF recognition by ERM proteins. Structure 14:777-789.
-
(2006)
Structure
, vol.14
, pp. 777-789
-
-
Terawaki, S.1
Maesaki, R.2
Hakoshima, T.3
-
23
-
-
0034724536
-
Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain
-
Pearson MA, Reczek D, Bretscher A, Karplus PA (2000) Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101:259-270.
-
(2000)
Cell
, vol.101
, pp. 259-270
-
-
Pearson, M.A.1
Reczek, D.2
Bretscher, A.3
Karplus, P.A.4
-
24
-
-
0037415682
-
Structural basis of adhesion-molecule recognition by ERM proteins revealed by the crystal structure of the radixin-ICAM-2 complex
-
DOI 10.1093/emboj/cdg039
-
Hamada K, Shimizu T, Yonemura S, Tsukita S, Hakoshima T (2003) Structural basis of adhesion-molecule recognition by ERM proteins revealed by the crystal structure of the radixin-ICAM-2 complex. EMBO J 22:502-514. (Pubitemid 36193595)
-
(2003)
EMBO Journal
, vol.22
, Issue.3
, pp. 502-514
-
-
Hamada, K.1
Shimizu, T.2
Yonemura, S.3
Tsukita, S.4
Tsukita, S.5
Hakoshima, T.6
-
25
-
-
34547113109
-
Structural basis for type II membrane protein binding by ERM proteins revealed by the radixin-neutral endopeptidase 24.11 (NEP) complex
-
DOI 10.1074/jbc.M609232200
-
Terawaki S, Kitano K, Hakoshima T (2007) Structural basis for type II membrane protein binding by ERM proteins revealed by the radixin-neutral endopeptidase 24.11 (NEP) complex. J Biol Chem 282:19854-19862. (Pubitemid 47100069)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.27
, pp. 19854-19862
-
-
Terawaki, S.-I.1
Kitano, K.2
Hakoshima, T.3
-
26
-
-
36849051516
-
Structural basis of PSGL-1 binding to ERM proteins
-
DOI 10.1111/j.1365-2443.2007.01137.x
-
Takai Y, Kitano K, Terawaki S, Maesaki R, Hakoshima T (2007) Structural basis of PSGL-1 binding to ERM proteins. Genes Cells 12:1329-1338. (Pubitemid 350218028)
-
(2007)
Genes to Cells
, vol.12
, Issue.12
, pp. 1329-1338
-
-
Takai, Y.1
Kitano, K.2
Terawaki, S.-I.3
Maesaki, R.4
Hakoshima, T.5
-
27
-
-
57649194818
-
Structural basis for CD44 recognition by ERM proteins
-
Mori T, et al. (2008) Structural basis for CD44 recognition by ERM proteins. J Biol Chem 283:29602-29612.
-
(2008)
J Biol Chem
, vol.283
, pp. 29602-29612
-
-
Mori, T.1
-
28
-
-
47849118480
-
Structural basis of the cytoplasmic tail of adhesion molecule CD43 and its binding to ERM proteins
-
Takai Y, Kitano K, Terawaki S, Maesaki R, Hakoshima T (2008) Structural basis of the cytoplasmic tail of adhesion molecule CD43 and its binding to ERM proteins. J Mol Biol 381:634-644.
-
(2008)
J Mol Biol
, vol.381
, pp. 634-644
-
-
Takai, Y.1
Kitano, K.2
Terawaki, S.3
Maesaki, R.4
Hakoshima, T.5
-
29
-
-
49349085136
-
Structural basis for the interaction between the cytoplasmic domain of the hyaluronate receptor layilin and the talin F3 subdomain
-
Wegener KL, et al. (2008) Structural basis for the interaction between the cytoplasmic domain of the hyaluronate receptor layilin and the talin F3 subdomain. J Mol Biol 382:112-126.
-
(2008)
J Mol Biol
, vol.382
, pp. 112-126
-
-
Wegener, K.L.1
-
30
-
-
0037238844
-
Structural determinants of integrin recognition by talin
-
DOI 10.1016/S1097-2765(02)00823-7
-
Garcia-Alvarez B, et al. (2003) Structural determinants of integrin recognition by talin. Mol Cell 11:49-58. (Pubitemid 36131107)
-
(2003)
Molecular Cell
, vol.11
, Issue.1
, pp. 49-58
-
-
Garcia-Alvarez, B.1
De Pereda, J.M.2
Calderwood, D.A.3
Ulmer, T.S.4
Critchley, D.5
Campbell, I.D.6
Ginsberg, M.H.7
Liddington, R.C.8
-
31
-
-
33845987101
-
Structural Basis of Integrin Activation by Talin
-
DOI 10.1016/j.cell.2006.10.048, PII S0092867406015960
-
Wegener KL, et al. (2007) Structural basis of integrin activation by talin. Cell 128:171-182. (Pubitemid 46048890)
-
(2007)
Cell
, vol.128
, Issue.1
, pp. 171-182
-
-
Wegener, K.L.1
Partridge, A.W.2
Han, J.3
Pickford, A.R.4
Liddington, R.C.5
Ginsberg, M.H.6
Campbell, I.D.7
-
32
-
-
33750933520
-
Vertebrate MAX-1 is required for vascular patterning in zebrafish
-
DOI 10.1073/pnas.0603959103
-
Zhong H, et al. (2006) Vertebrate MAX-1 is required for vascular patterning in zebrafish. Proc Natl Acad Sci USA 103:16800-16805. (Pubitemid 44737333)
-
(2006)
Proceedings of the National Academy of Sciences of the United States of America
, vol.103
, Issue.45
, pp. 16800-16805
-
-
Zhong, H.1
Wu, X.2
Huang, H.3
Fan, Q.4
Zhu, Z.5
Lin, S.6
-
33
-
-
0033814006
-
A novel calcium/calmodulin-regulated kinesin-like protein is highly conserved between monocots and dicots
-
Abdel-Ghany SE, Reddy AS (2000) A novel calcium/calmodulin-regulated kinesin-like protein is highly conserved between monocots and dicots. DNA Cell Biol 19:567-578.
-
(2000)
DNA Cell Biol
, vol.19
, pp. 567-578
-
-
Abdel-Ghany, S.E.1
Reddy, A.S.2
-
34
-
-
0033825065
-
Evaluation of the myosin VIIA gene and visual function in patients with Usher syndrome type I
-
Bharadwaj AK, Kasztejna JP, Huq S, Berson EL, Dryja TP (2000) Evaluation of the myosin VIIA gene and visual function in patients with Usher syndrome type I. Exp Eye Res 71:173-181.
-
(2000)
Exp Eye Res
, vol.71
, pp. 173-181
-
-
Bharadwaj, A.K.1
Kasztejna, J.P.2
Huq, S.3
Berson, E.L.4
Dryja, T.P.5
-
35
-
-
3543020910
-
Identification and molecular modelling of a mutation in the motor head domain of myosin VIIA in a family autosomal dominant hearing impairment (DFNA11)
-
Luijendijk MW, et al. (2004) Identification and molecular modelling of a mutation in the motor head domain of myosin VIIA in a family with autosomal dominant hearing impairment (DFNA11). Hum Genet 115:149-156. (Pubitemid 39010929)
-
(2004)
Human Genetics
, vol.115
, Issue.2
, pp. 149-156
-
-
Luijendijk, M.W.J.1
Van Wijk, E.2
Bischoff, A.M.L.C.3
Krieger, E.4
Huygen, P.L.M.5
Pennings, R.J.E.6
Brunner, H.G.7
Cremers, C.W.R.J.8
Cremers, F.P.M.9
Kremer, H.10
-
36
-
-
33746626074
-
Mutation profile of the MYO7A gene in Spanish patients with Usher syndrome type I
-
Jaijo T, et al. (2006) Mutation profile of the MYO7A gene in Spanish patients with Usher syndrome type I. Hum Mutat 27:290-291.
-
(2006)
Hum Mutat
, vol.27
, pp. 290-291
-
-
Jaijo, T.1
|