-
1
-
-
79952604397
-
-
For a definition of StReCH and elaboration of the generic attributes of this concept, see ref 2a.
-
For a definition of StReCH and elaboration of the generic attributes of this concept, see ref 2a.
-
-
-
-
2
-
-
33644783530
-
-
Blakemore, P. R.; Marsden, S. P.; Vater, H. D. Org. Lett. 2006, 8, 773-776
-
(2006)
Org. Lett.
, vol.8
, pp. 773-776
-
-
Blakemore, P.R.1
Marsden, S.P.2
Vater, H.D.3
-
4
-
-
35048834773
-
-
Stymiest, J. L.; Dutheuil, G.; Mahmood, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2007, 46, 7491-7494
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 7491-7494
-
-
Stymiest, J.L.1
Dutheuil, G.2
Mahmood, A.3
Aggarwal, V.K.4
-
5
-
-
57649120956
-
-
Stymiest, J. K.; Bagutski, V.; French, R. M.; Aggarwal, V. K. Nature 2008, 456, 778-782
-
(2008)
Nature
, vol.456
, pp. 778-782
-
-
Stymiest, J.K.1
Bagutski, V.2
French, R.M.3
Aggarwal, V.K.4
-
6
-
-
77954850632
-
-
For applications in total synthesis, see: Org. Biomol. Chem. 2006, 4, 2193-2207
-
Bagutski, V.; French, R. M.; Aggarwal, V. K. Angew. Chem., Int. Ed 2010, 49, 5142-5145 For applications in total synthesis, see: Besong, G.; Jarowicki, K.; Kocienski, P. J.; Sliwinski, E.; Boyle, F. T. Org. Biomol. Chem. 2006, 4, 2193-2207
-
(2010)
Angew. Chem., Int. Ed
, vol.49
, pp. 5142-5145
-
-
Bagutski, V.1
French, R.M.2
Aggarwal, V.K.3
Besong, G.4
Jarowicki, K.5
Kocienski, P.J.6
Sliwinski, E.7
Boyle, F.T.8
-
7
-
-
70349925853
-
-
Dutheuil, G.; Webster, M. P.; Worthington, P. A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2009, 48, 6317-6319
-
(2009)
Angew. Chem., Int. Ed.
, vol.48
, pp. 6317-6319
-
-
Dutheuil, G.1
Webster, M.P.2
Worthington, P.A.3
Aggarwal, V.K.4
-
8
-
-
77956510772
-
-
Robinson, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2010, 49, 6673-6675
-
(2010)
Angew. Chem., Int. Ed.
, vol.49
, pp. 6673-6675
-
-
Robinson, A.1
Aggarwal, V.K.2
-
9
-
-
59649103093
-
-
Vedrenne, E.; Wallner, O. A.; Vitale, M.; Schmidt, F.; Aggarwal, V. K. Org. Lett. 2009, 11, 165-168
-
(2009)
Org. Lett.
, vol.11
, pp. 165-168
-
-
Vedrenne, E.1
Wallner, O.A.2
Vitale, M.3
Schmidt, F.4
Aggarwal, V.K.5
-
10
-
-
59049086963
-
-
Schmidt, F.; Keller, F.; Vedrenne, E.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2009, 48, 1149-1152
-
(2009)
Angew. Chem., Int. Ed.
, vol.48
, pp. 1149-1152
-
-
Schmidt, F.1
Keller, F.2
Vedrenne, E.3
Aggarwal, V.K.4
-
11
-
-
38349179268
-
-
Coldham, I.; Patel, J. J.; Raimbault, S.; Whittaker, D. T. E.; Adams, H.; Fang, G. Y.; Aggarwal, V. K. Org. Lett. 2008, 10, 141-143
-
(2008)
Org. Lett.
, vol.10
, pp. 141-143
-
-
Coldham, I.1
Patel, J.J.2
Raimbault, S.3
Whittaker, D.T.E.4
Adams, H.5
Fang, G.Y.6
Aggarwal, V.K.7
-
12
-
-
61349161740
-
-
Reviews: Thomas, S. P.; French, R. M.; Jheengut, V.; Aggarwal, V. K. Chem. Rec. 2009, 9, 24-29
-
(2009)
Chem. Rec.
, vol.9
, pp. 24-29
-
-
Thomas, S.P.1
French, R.M.2
Jheengut, V.3
Aggarwal, V.K.4
-
15
-
-
0032480407
-
-
For recent applications of the Matteson chain extension method, see: J. Organomet. Chem. 2000, 614-615, 314
-
For a substrate-controlled approach to synthesis based on iterative homologation of boronic esters, see ref 6a and: Matteson, D. S. Tetrahedron 1998, 54, 10555-10607 For recent applications of the Matteson chain extension method, see: Hiscox, W. C.; Matteson, D. S. J. Organomet. Chem. 2000, 614-615, 314
-
(1998)
Tetrahedron
, vol.54
, pp. 10555-10607
-
-
Matteson, D.S.1
Hiscox, W.C.2
Matteson, D.S.3
-
16
-
-
1642502980
-
-
Davoli, P.; Spaggiari, A.; Castagnetti, L.; Prati, F. Org. Biomol. Chem. 2004, 2, 38-47
-
(2004)
Org. Biomol. Chem.
, vol.2
, pp. 38-47
-
-
Davoli, P.1
Spaggiari, A.2
Castagnetti, L.3
Prati, F.4
-
17
-
-
0034665258
-
-
For seminal work concerning the generation of scalemic carbenoids via sulfoxide-ligand exchange, see: Hoffmann, R. W.; Nell, P. G.; Leo, R.; Harms, K. Chem.-Eur. J. 2000, 6, 3359-3365
-
(2000)
Chem.-Eur. J.
, vol.6
, pp. 3359-3365
-
-
Hoffmann, R.W.1
Nell, P.G.2
Leo, R.3
Harms, K.4
-
18
-
-
0026551490
-
-
Spande, T. F.; Garraffo, H. M.; Edwards, M. W.; Yeh, H. J. C.; Pannell, L.; Daly, J. W. J. Am. Chem. Soc. 1992, 114, 3475-3478
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 3475-3478
-
-
Spande, T.F.1
Garraffo, H.M.2
Edwards, M.W.3
Yeh, H.J.C.4
Pannell, L.5
Daly, J.W.6
-
19
-
-
0000049117
-
-
Daly, J. W.; Tokuyama, T.; Fujiwara, T.; Highet, R. J.; Karle, I. L. J. Am. Chem. Soc. 1980, 102, 830-836
-
(1980)
J. Am. Chem. Soc.
, vol.102
, pp. 830-836
-
-
Daly, J.W.1
Tokuyama, T.2
Fujiwara, T.3
Highet, R.J.4
Karle, I.L.5
-
20
-
-
0027999843
-
-
Damaj, M. I.; Creasy, K. R.; Grove, A. D.; Rosecrans, J. A.; Martin, B. R. Brain Res. 1994, 664, 34-40
-
(1994)
Brain Res.
, vol.664
, pp. 34-40
-
-
Damaj, M.I.1
Creasy, K.R.2
Grove, A.D.3
Rosecrans, J.A.4
Martin, B.R.5
-
21
-
-
22244491312
-
-
There are over 50 published syntheses of epibatidine. For recent efforts and a review, see: Lee, C.-L. K.; Loh, T.-P. Org. Lett. 2005, 7, 2965-2967
-
(2005)
Org. Lett.
, vol.7
, pp. 2965-2967
-
-
Lee, C.-L.K.1
Loh, T.-P.2
-
22
-
-
24644484333
-
-
Aggarwal, V. K.; Olofsson, B. Angew. Chem., Int. Ed. 2005, 44, 5516-5519
-
(2005)
Angew. Chem., Int. Ed.
, vol.44
, pp. 5516-5519
-
-
Aggarwal, V.K.1
Olofsson, B.2
-
23
-
-
28944450864
-
-
Hoashi, Y.; Yabuta, T.; Yuan, P.; Miyabe, H.; Takemoto, Y. Tetrahedron 2006, 62, 365-374
-
(2006)
Tetrahedron
, vol.62
, pp. 365-374
-
-
Hoashi, Y.1
Yabuta, T.2
Yuan, P.3
Miyabe, H.4
Takemoto, Y.5
-
24
-
-
35348842063
-
-
Armstrong, A.; Bhonoah, Y.; Shanahan, S. E. J. Org. Chem. 2007, 72, 8019-8024
-
(2007)
J. Org. Chem.
, vol.72
, pp. 8019-8024
-
-
Armstrong, A.1
Bhonoah, Y.2
Shanahan, S.E.3
-
25
-
-
77954549122
-
-
Review: Org. Prep. Proced. Int. 2002, 34, 1-26
-
Bexrud, J.; Lautens, M. Org. Lett. 2010, 12, 3160-3163 Review: Olivo, H. F.; Hemenway, M. S. Org. Prep. Proced. Int. 2002, 34, 1-26
-
(2010)
Org. Lett.
, vol.12
, pp. 3160-3163
-
-
Bexrud, J.1
Lautens, M.2
Olivo, H.F.3
Hemenway, M.S.4
-
27
-
-
67651149831
-
-
Garraffo, H. M.; Spande, T. F.; Williams, M. Heterocycles 2009, 79, 207-217
-
(2009)
Heterocycles
, vol.79
, pp. 207-217
-
-
Garraffo, H.M.1
Spande, T.F.2
Williams, M.3
-
28
-
-
27844548710
-
-
Drago, C.; Caggiano, L.; Jackson, R. F. W. Angew. Chem., Int. Ed. 2005, 44, 7221-7223
-
(2005)
Angew. Chem., Int. Ed.
, vol.44
, pp. 7221-7223
-
-
Drago, C.1
Caggiano, L.2
Jackson, R.F.W.3
-
29
-
-
0032547296
-
-
Cogan, D. A.; Liu, G.; Kim, K.; Backes, B. J.; Ellman, J. A. J. Am. Chem. Soc. 1998, 120, 8011-8019
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 8011-8019
-
-
Cogan, D.A.1
Liu, G.2
Kim, K.3
Backes, B.J.4
Ellman, J.A.5
-
30
-
-
33748746732
-
-
Bolm, C.; Bienewald, F. Angew. Chem., Int. Ed. 1995, 34, 2640-2642
-
(1995)
Angew. Chem., Int. Ed.
, vol.34
, pp. 2640-2642
-
-
Bolm, C.1
Bienewald, F.2
-
31
-
-
0006176684
-
-
Stereochemical inversion in this reaction is well precedented; see: Calzavara, P.; Cinquini, M.; Colonna, S.; Fornasier, R.; Montanari, F. J. Am. Chem. Soc. 1973, 95, 7431-7436
-
(1973)
J. Am. Chem. Soc.
, vol.95
, pp. 7431-7436
-
-
Calzavara, P.1
Cinquini, M.2
Colonna, S.3
Fornasier, R.4
Montanari, F.5
-
32
-
-
0023841083
-
-
Satoh, T.; Oohara, T.; Ueda, Y.; Yamakawa, K. Tetrahedron Lett. 1988, 29, 313-316
-
(1988)
Tetrahedron Lett.
, vol.29
, pp. 313-316
-
-
Satoh, T.1
Oohara, T.2
Ueda, Y.3
Yamakawa, K.4
-
33
-
-
68149164641
-
-
Previously, a combination of t -BuLi in PhMe had been regarded as optimal for the generation of α-chloroalkyllithiums via SLE (refs 2b, 16b); however, wary of the pyrophoric nature of t -BuLi, an alternative to this hazardous reagent was sought. It has now been discovered that PhLi, a reagent that presents significantly less risk, is superior to t -BuLi for SLE based StReCH chemistry. For recent examples of PhLi induced SLE, see
-
Previously, a combination of t -BuLi in PhMe had been regarded as optimal for the generation of α-chloroalkyllithiums via SLE (refs 2b, 16b); however, wary of the pyrophoric nature of t -BuLi, an alternative to this hazardous reagent was sought. It has now been discovered that PhLi, a reagent that presents significantly less risk, is superior to t -BuLi for SLE based StReCH chemistry. For recent examples of PhLi induced SLE, see: Ferrer, C.; Riera, A.; Verdaguer, X. Organometallics 2009, 28, 4571-4576
-
(2009)
Organometallics
, vol.28
, pp. 4571-4576
-
-
Ferrer, C.1
Riera, A.2
Verdaguer, X.3
-
34
-
-
51949110354
-
-
Jarowicki, K.; Kilner, C.; Kocienski, P. J.; Komsta, Z.; Milne, J. E.; Wojtasiewicz, A.; Coombs, V. Synthesis 2008, 2747-2763
-
(2008)
Synthesis
, pp. 2747-2763
-
-
Jarowicki, K.1
Kilner, C.2
Kocienski, P.J.3
Komsta, Z.4
Milne, J.E.5
Wojtasiewicz, A.6
Coombs, V.7
-
35
-
-
53849113695
-
-
Gomez, A. M.; Casillas, M.; Barrio, A.; Gawel, A.; Lopez, J. C. Eur. J. Org. Chem. 2008, 3933-3942
-
(2008)
Eur. J. Org. Chem.
, pp. 3933-3942
-
-
Gomez, A.M.1
Casillas, M.2
Barrio, A.3
Gawel, A.4
Lopez, J.C.5
-
36
-
-
84981775714
-
-
Carbenoid 8a can decompose via a variety of pathways that do not lead to 14; this accounts for the lower isolated yield of 14 vs 13. See:, Lithiated sulfoxide 15 is likely also generated by direct deprotonation of 12 by PhLi. See: Tetrahedron Lett. 2007, 48, 3999-4002
-
Carbenoid 8a can decompose via a variety of pathways that do not lead to 14; this accounts for the lower isolated yield of 14 vs 13. See: Köbrich, G. Angew. Chem., Int. Ed. 1967, 6, 41-52 Lithiated sulfoxide 15 is likely also generated by direct deprotonation of 12 by PhLi. See: Blakemore, P. R.; Burge, M. S.; Sephton, M. A. Tetrahedron Lett. 2007, 48, 3999-4002
-
(1967)
Angew. Chem., Int. Ed.
, vol.6
, pp. 41-52
-
-
Köbrich, G.1
Blakemore, P.R.2
Burge, M.S.3
Sephton, M.A.4
-
37
-
-
79952608024
-
-
Incomplete α-deuteration of the starting material used for entries 3 and 4, together with the expected faster H transfer from the minor H- 12 components, accounts in part for the generation of 14 as a mixture of all three (HH, HD, and DD) isotopomers. β-Elimination of HCl from 8a by the action of another 8a as base provides a second mechanism for proton transfer that could lead to HD- 14 from D- 12, see ref.
-
Incomplete α-deuteration of the starting material used for entries 3 and 4, together with the expected faster H transfer from the minor H- 12 components, accounts in part for the generation of 14 as a mixture of all three (HH, HD, and DD) isotopomers. β-Elimination of HCl from 8a by the action of another 8a as base provides a second mechanism for proton transfer that could lead to HD- 14 from D- 12, see ref.
-
-
-
-
38
-
-
79952603071
-
-
For a given configuration at sulfur, syn and anti α - chlorosulfoxides lead to opposite carbenoid enantiomers upon SLE. Thus, in the case of entry 3 (Table 2), a product ee no higher than 90% should be expected given that the dr of the carbenoid source was 95:5.
-
For a given configuration at sulfur, syn and anti α- chlorosulfoxides lead to opposite carbenoid enantiomers upon SLE. Thus, in the case of entry 3 (Table 2), a product ee no higher than 90% should be expected given that the dr of the carbenoid source was 95:5.
-
-
-
-
39
-
-
0000670716
-
-
2 + 1):(2 × 19) = 90.5:9.5. For an early description of this kind of effect, see
-
2 + 1):(2 × 19) = 90.5:9.5. For an early description of this kind of effect, see: Vigneron, J. P.; Dhaenens, M.; Horeau, A. Tetrahedron 1973, 29, 1055-1059
-
(1973)
Tetrahedron
, vol.29
, pp. 1055-1059
-
-
Vigneron, J.P.1
Dhaenens, M.2
Horeau, A.3
-
40
-
-
78650085977
-
-
Related protodeboronations from benzylic positions were recently reported
-
Related protodeboronations from benzylic positions were recently reported: Nave, S.; Sonawane, R. P.; Elford, T. G.; Aggarwal, V. K. J. Am. Chem. Soc. 2010, 132, 17096-17098
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 17096-17098
-
-
Nave, S.1
Sonawane, R.P.2
Elford, T.G.3
Aggarwal, V.K.4
-
41
-
-
0027442712
-
-
Corey, E. J.; Loh, T.-P.; AchyuthaRao, S.; Daley, D. C.; Sarshar, S. J. Org. Chem. 1993, 58, 5600-5602
-
(1993)
J. Org. Chem.
, vol.58
, pp. 5600-5602
-
-
Corey, E.J.1
Loh, T.-P.2
Achyutharao, S.3
Daley, D.C.4
Sarshar, S.5
-
42
-
-
0344946187
-
-
A pinacol-type reductive cyclization of 23 could lead directly to 5-oxyepibatidines. 5-Hydroxyepibatidines show selective binding affinity for nAChR subtypes; see
-
A pinacol-type reductive cyclization of 23 could lead directly to 5-oxyepibatidines. 5-Hydroxyepibatidines show selective binding affinity for nAChR subtypes; see: Wei, Z.-L.; Xiao, Y.; George, C.; Kellar, K. J.; Kozikowski, A. P. Org. Biorg. Chem. 2003, 1, 3878-3881
-
(2003)
Org. Biorg. Chem.
, vol.1
, pp. 3878-3881
-
-
Wei, Z.-L.1
Xiao, Y.2
George, C.3
Kellar, K.J.4
Kozikowski, A.P.5
|