-
2
-
-
0038648569
-
Two-photon imaging to a depth of 1000^m in living brains by use of a Ti:Al2O3 regenerated amplifier
-
P Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000^m in living brains by use of a Ti:Al2O3 regenerated amplifier,” Opt. Lett. 28, 1022-1024 (2003).
-
(2003)
Opt. Lett.
, vol.28
, pp. 1022-1024
-
-
Theer, P.1
Hasan, M.T.2
Denk, W.3
-
3
-
-
65349101712
-
Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media
-
M. Balu, T. Baldacchini, J. Carter, R. Zadoyan T. B. Krasieva, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14, 010508 (2009).
-
(2009)
J. Biomed. Opt.
, vol.14
, pp. 10508
-
-
Balu, M.1
Baldacchini, T.2
Carter, J.R.3
Zadoyan Krasieva, T.B.4
Tromberg, B.J.5
-
4
-
-
0037197829
-
Adaptive aberration correction in a confocal microscope
-
M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788-5792 (2002).
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 5788-5792
-
-
Booth, M.J.1
Neil, M.A.A.2
Juskaitis, R.3
Wilson, T.4
-
5
-
-
0036098166
-
Adaptive correction in depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror
-
L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction in depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2003).
-
(2003)
J. Microsc.
, vol.206
, pp. 65-71
-
-
Sherman, L.1
Ye, J.Y.2
Albert, O.3
Norris, T.B.4
-
6
-
-
0000665876
-
Resonant point scatterers in multiple scattering of classical waves
-
T. M. Nieuwenhuizen, A. Lagendijk, and B. A. van Tiggelen, “Resonant point scatterers in multiple scattering of classical waves,” Phys. Lett. A 169, 191-194 (1992).
-
(1992)
Phys. Lett. A
, vol.169
, pp. 191-194
-
-
Nieuwenhuizen, T.M.1
Lagendijk, A.2
Van Tiggelen, B.A.3
-
8
-
-
0001560546
-
Light scattering from cells: Finite-difference time-domain simulations and goniometric measurements
-
R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651-3661 (1999).
-
(1999)
Appl. Opt.
, vol.38
, pp. 3651-3661
-
-
Drezek, R.1
Dunn, A.2
Richards-Kortum, R.3
-
9
-
-
23044459575
-
3-D simulation of light scattering from biological cells and cell differentiation
-
C. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. 10, 014007 (2005).
-
(2005)
J. Biomed. Opt.
, vol.10
, pp. 14007
-
-
Liu, C.1
Capjack, C.2
Rozmus, W.3
-
10
-
-
56149096629
-
Generation of an incident focused light pulse in FDTD
-
I. R. Capoglu, A. Taflove, and V. Backman, “Generation of an incident focused light pulse in FDTD,” Opt. Express 16, 19208-19220 (2008).
-
(2008)
Opt. Express
, vol.16
, pp. 19208-19220
-
-
Capoglu, I.R.1
Taflove, A.2
Backman, V.3
-
11
-
-
67749102039
-
Three-dimensional computations of focused beam propagation through multiple biological cells
-
M. S. Starosta and A. K. Dunn, “Three-dimensional computations of focused beam propagation through multiple biological cells,” Opt. Express 17, 12455-12469 (2009).
-
(2009)
Opt. Express
, vol.17
, pp. 12455-12469
-
-
Starosta, M.S.1
Dunn, A.K.2
-
14
-
-
0037270756
-
Light propagation in biological tissue
-
A. D. Kim and J. B. Keller, “Light propagation in biological tissue,” J. Opt. Soc. Am. A 20, 92-98 (2003).
-
(2003)
J. Opt. Soc. Am. A
, vol.20
, pp. 92-98
-
-
Kim, A.D.1
Keller, J.B.2
-
15
-
-
84975572602
-
Radiance and polarization of multiple scattered light from haze and clouds
-
G. W. Kattawar and G. N. Plass, “Radiance and polarization of multiple scattered light from haze and clouds,” Appl. Opt. 7, 1519-1527(1968).
-
(1968)
Appl. Opt.
, vol.7
, pp. 1519-1527
-
-
Kattawar, G.W.1
Plass, G.N.2
-
16
-
-
0021080356
-
A Monte Carlo model for the absorption and flux distributions of light in tissue
-
B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824-830 (1983).
-
(1983)
Med. Phys.
, vol.10
, pp. 824-830
-
-
Wilson, B.C.1
Adam, G.2
-
18
-
-
0036629505
-
Propagation of polarized light in birefringent turbid media: A Monte Carlo study
-
X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: A Monte Carlo study,” J. Biomed. Opt. 7, 279-290 (2002).
-
(2002)
J. Biomed. Opt.
, vol.7
, pp. 279-290
-
-
Wang, X.1
Wang, L.V.2
-
19
-
-
27244452305
-
Frequency domain photon migration in the 5-P1 approximation: Analysis of ballistic, transport, and diffuse regimes
-
J. S. You, C. K. Hayakawa, and V. Venugopalan, “Frequency domain photon migration in the 5-P1 approximation: Analysis of ballistic, transport, and diffuse regimes,” Phys. Rev. E 72, 021903 (2005).
-
(2005)
Phys. Rev. E
, vol.72
, pp. 21903
-
-
You, J.S.1
Hayakawa, C.K.2
Venugopalan, V.3
-
20
-
-
0030140325
-
Efficient Monte Carlo simulation of confocal microscopy in turbid media
-
J. M. Schmitt and K. Ben-Lataief, “Efficient Monte Carlo simulation of confocal microscopy in turbid media,” J. Opt. Soc. Am. A 13, 952-961 (1996).
-
(1996)
J. Opt. Soc. Am. A
, vol.13
, pp. 952-961
-
-
Schmitt, J.M.1
Ben-Lataief, K.2
-
21
-
-
0032364759
-
Monte Carlo analysis of two-photon fluorescence imaging through a scattering medium
-
C. M. Blanca and C. Saloma, “Monte Carlo analysis of two-photon fluorescence imaging through a scattering medium,” Appl. Opt. 37, 8092-8102 (1998).
-
(1998)
Appl. Opt.
, vol.37
, pp. 8092-8102
-
-
Blanca, C.M.1
Saloma, C.2
-
22
-
-
0032620398
-
Monte Carlo simulation of converging laser beams propagating in biological materials
-
Z. Song, K. Dong, X. H. Hu, and J. Q. Lu, “Monte Carlo simulation of converging laser beams propagating in biological materials,” Appl. Opt. 38, 2944-2949 (1999).
-
(1999)
Appl. Opt.
, vol.38
, pp. 2944-2949
-
-
Song, Z.1
Dong, K.2
Hu, X.H.3
Lu, J.Q.4
-
23
-
-
0032621117
-
Absorption distribution of an optical beam focused into a turbid medium
-
L. V. Wang and G. Liang, “Absorption distribution of an optical beam focused into a turbid medium,” Appl. Opt. 38, 4951-958 (1999).
-
(1999)
Appl. Opt
, vol.38
, pp. 4951-4958
-
-
Wang, L.V.1
Liang, G.2
-
24
-
-
0032607665
-
Effective point-spread function for fast imaging modeling and processing in microscopic imaging through turbid media
-
X. S. Gan and M. Gu, “Effective point-spread function for fast imaging modeling and processing in microscopic imaging through turbid media,” Opt. Lett. 24, 741-743 (1999).
-
(1999)
Opt. Lett.
, vol.24
, pp. 741-743
-
-
Gan, X.S.1
Gu, M.2
-
25
-
-
0000555824
-
Influence of optical properties on two-photon fluorescence imaging in turbid samples
-
A. K. Dunn, V. P. Wallace, M. Coleno, M. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 39, 1194-1201 (2000).
-
(2000)
Appl. Opt.
, vol.39
, pp. 1194-1201
-
-
Dunn, A.K.1
Wallace, V.P.2
Coleno, M.3
Berns, M.4
Tromberg, B.J.5
-
26
-
-
0141756177
-
Monte Carlo simulation ofmultiphoton fluorescence microscopic imaging through inhomogeneous tissuelike turbid media
-
X. Deng, Gan X, and M. Gu, “Monte Carlo simulation ofmultiphoton fluorescence microscopic imaging through inhomogeneous tissuelike turbid media,” J. Biomed. Opt. 8, 440-449 (2003).
-
(2003)
J. Biomed. Opt.
, vol.8
, pp. 440-449
-
-
Deng, X.1
Gan, X.2
Gu, M.3
-
27
-
-
0038209511
-
Penetration depth of single-, two-, and three-photon fluorescence microscopic imaging through human cortex structures: Monte Carlo simulation
-
X. Deng and M. Gu, “Penetration depth of single-, two-, and three-photon fluorescence microscopic imaging through human cortex structures: Monte Carlo simulation,” Appl. Opt. 42, 3321-3329 (2003).
-
(2003)
Appl. Opt.
, vol.42
, pp. 3321-3329
-
-
Deng, X.1
Gu, M.2
-
28
-
-
33746453403
-
Simulation study of second-harmonic microscopic imaging through tissue-like turbid media
-
X. Deng, X. Wang, H. Liu, Z. Zhuang, and Z. Guo “Simulation study of second-harmonic microscopic imaging through tissue-like turbid media,” J. Biomed. Opt. 11, 024013 (2006).
-
(2006)
J. Biomed. Opt
, vol.11
, pp. 24013
-
-
Deng, X.1
Wang, X.2
Liu, H.3
Zhuang, Z.4
Guo, Z.5
-
29
-
-
33846185542
-
Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations
-
A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272, 269-278 (2007).
-
(2007)
Opt. Commun.
, vol.272
, pp. 269-278
-
-
Leray, A.1
Odin, C.2
Huguet, E.3
Amblard, F.4
Le Grand, Y.5
-
30
-
-
0031161838
-
Model of optical coherence tomography of heterogeneous tissue
-
J. M. Schmitt and A. Knuttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231-1242 (1997).
-
(1997)
J. Opt. Soc. Am. A
, vol.14
, pp. 1231-1242
-
-
Schmitt, J.M.1
Knuttel, A.2
-
31
-
-
0031667694
-
Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation
-
D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025-3044 (1998).
-
(1998)
Phys. Med. Biol.
, vol.43
, pp. 3025-3044
-
-
Smithies, D.J.1
Lindmo, T.2
Chen, Z.3
Nelson, J.S.4
Milner, T.E.5
-
32
-
-
0036827027
-
Derivation of a Monte Carlo method for modeling heterodyne detection in optical coherence tomography systems
-
A. Tycho, T. M. Jorgensen, H. T. Yura, and P. E. Andersen, “Derivation of a Monte Carlo method for modeling heterodyne detection in optical coherence tomography systems,” Appl. Opt. 41, 6676-6691 (2002).
-
(2002)
Appl. Opt.
, vol.41
, pp. 6676-6691
-
-
Tycho, A.1
Jorgensen, T.M.2
Yura, H.T.3
Andersen, P.E.4
-
33
-
-
17444426141
-
Particle-fixed Monte Carlo model for optical coherence tomography
-
G. Xiong, P. Xue, J. Wu, Q. Miao, R. Wang, and L. Ji, “Particle-fixed Monte Carlo model for optical coherence tomography,” Opt. Express 13, 2182-2195 (2005).
-
(2005)
Opt. Express
, vol.13
, pp. 2182-2195
-
-
Xiong, G.1
Xue, P.2
Wu, J.3
Miao, Q.4
Wang, R.5
Ji, L.6
-
34
-
-
58149312873
-
Monte Carlo modeling of spatial coherence: Free space propagation
-
D. G. Fisher, S. A. Prahl, and D. D. Duncan, “Monte Carlo modeling of spatial coherence: free space propagation,” J. Opt. Soc. Am. A 25, 2571-2581 (2008).
-
(2008)
J. Opt. Soc. Am. A
, vol.25
, pp. 2571-2581
-
-
Fisher, D.G.1
Prahl, S.A.2
Duncan, D.D.3
-
35
-
-
0001426206
-
Excitation with a focused, pulsed optical beam in scattering media: Diffraction effects
-
V. R. Daria, C. Saloma, and S. Kawata, “Excitation with a focused, pulsed optical beam in scattering media: diffraction effects,” Appl. Opt. 39, 5244-5255 (2000).
-
(2000)
Appl. Opt.
, vol.39
, pp. 5244-5255
-
-
Daria, V.R.1
Saloma, C.2
Kawata, S.3
-
36
-
-
11244304353
-
Electric field Monte Carlo simulation of polarized light propagation in turbid media
-
M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 12, 6530-6538 (2004).
-
(2004)
Opt. Express
, vol.12
, pp. 6530-6538
-
-
Xu, M.1
-
37
-
-
30144446252
-
Time-resolved ring structures of circularly polarized beams backscattered from forward scattering media
-
K. G. Philips, M. Xu, S. K. Gayen, and R. R. Alfano, “Time-resolved ring structures of circularly polarized beams backscattered from forward scattering media,” Opt. Express 13, 7954-7969 (2005).
-
(2005)
Opt. Express
, vol.13
, pp. 7954-7969
-
-
Philips, K.G.1
Xu, M.2
Gayen, S.K.3
Alfano, R.R.4
-
38
-
-
42449104422
-
Electric field Monte Carlo simulation of coherent backscattering of polarized light by a turbid medium containing Mie scatterers
-
J. Sawicki, N. Kastor, and M. Xu, “Electric field Monte Carlo simulation of coherent backscattering of polarized light by a turbid medium containing Mie scatterers,” Opt. Express 16, 5728-5738 (2008).
-
(2008)
Opt. Express
, vol.16
, pp. 5728-5738
-
-
Sawicki, J.1
Kastor, N.2
Xu, M.3
-
39
-
-
68749115395
-
Amplitude and phase of tightly focused laser beams in turbid media
-
C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 043903 (2009).
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 43903
-
-
Hayakawa, C.K.1
Venugopalan, V.2
Krishnamachari, V.V.3
Potma, E.O.4
-
40
-
-
0001106323
-
Electromagnetic diffraction in optical systems 2: Structure of the image field in an aplanatic system
-
B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems 2: structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253, 358-379 (1959).
-
(1959)
Proc. Roy. Soc. A
, vol.253
, pp. 358-379
-
-
Richards, B.1
Wolf, E.2
-
42
-
-
0041500358
-
Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues
-
C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26, 1335-1337 (2001).
-
(2001)
Opt. Lett.
, vol.26
, pp. 1335-1337
-
-
Hayakawa, C.K.1
Spanier, J.2
Bevilacqua, F.3
Dunn, A.K.4
You, J.S.5
Tromberg, B.J.6
Venugopalan, V.7
-
44
-
-
0035297583
-
Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm
-
T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167-176 (2001).
-
(2001)
J. Biomed. Opt.
, vol.6
, pp. 167-176
-
-
Troy, T.L.1
Thennadil, S.N.2
-
46
-
-
2342546859
-
The diffraction theory of optical aberrations. Part I: General discussion of the geometrical aberrations
-
B. R. A. Nijboer, “The diffraction theory of optical aberrations. Part I: General discussion of the geometrical aberrations,” Physica 10, 679-692 (1943).
-
(1943)
Physica
, vol.10
, pp. 679-692
-
-
Nijboer, B.R.A.1
-
47
-
-
0001213104
-
Aberrations in confocal imaging systems
-
T. Wilson and A. R. Carlini, “Aberrations in confocal imaging systems,” J. Microsc. 154, 243-256 (1998).
-
(1998)
J. Microsc.
, vol.154
, pp. 243-256
-
-
Wilson, T.1
Carlini, A.R.2
-
48
-
-
13444302282
-
Effects of objective numerical apertures on achievable imaging depths in multiphoton microscopy
-
C. K. Tung, Y. Sun, W. Lo, S. J. Lin, S. H. Jee, and C. Y. Dong, “Effects of objective numerical apertures on achievable imaging depths in multiphoton microscopy,” Microsc. Res. Tech. 65, 308-314 (2004).
-
(2004)
Microsc. Res. Tech.
, vol.65
, pp. 308-314
-
-
Tung, C.K.1
Sun, Y.2
Lo, W.3
Lin, S.J.4
Jee, S.H.5
Dong, C.Y.6
-
49
-
-
0141756162
-
Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium
-
C. Y. Dong, K. Koenig, and P So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8, 450-459 (2003).
-
(2003)
J. Biomed. Opt.
, vol.8
, pp. 450-459
-
-
Dong, C.Y.1
Koenig, K.2
So, P.3
-
50
-
-
2942715023
-
Depolarization of light in tissue phantoms - effect of a distribution of the size of scatterers
-
N. Ghosh, H. S. Patel, and P K. Gupta, “Depolarization of light in tissue phantoms - effect of a distribution of the size of scatterers,” Opt. Express 11, 2198-2205 (2003).
-
(2003)
Opt. Express
, vol.11
, pp. 2198-2205
-
-
Ghosh, N.1
Patel, H.S.2
Gupta, P.K.3
|