-
1
-
-
0002446724
-
-
Trost B.M. Ed.; Pergamon Press: Oxford, U.K.
-
Roush, W. R. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, U.K., 1991; Vol. 2, p 1.
-
(1991)
Comprehensive Organic Synthesis
, vol.2
, pp. 1
-
-
Roush, W.R.1
-
7
-
-
77953305448
-
-
Chen, M.; Ess, D. H.; Roush, W. R. J. Am. Chem. Soc. 2010, 132, 7881
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 7881
-
-
Chen, M.1
Ess, D.H.2
Roush, W.R.3
-
8
-
-
70349868178
-
-
For recent examples, see: Amans, D.; Bareille, L.; Bellosta, V.; Cossy, J. J. Org. Chem. 2009, 74, 7665
-
(2009)
J. Org. Chem.
, vol.74
, pp. 7665
-
-
Amans, D.1
Bareille, L.2
Bellosta, V.3
Cossy, J.4
-
9
-
-
68149091447
-
-
Frein, J. D.; Taylor, R. E.; Sackett, D. L. Org. Lett. 2009, 11, 3186
-
(2009)
Org. Lett.
, vol.11
, pp. 3186
-
-
Frein, J.D.1
Taylor, R.E.2
Sackett, D.L.3
-
13
-
-
13344289806
-
-
Henriksen, U.; Snyder, J. P.; Halgren, T. A. J. Org. Chem. 1981, 46, 3767
-
(1981)
J. Org. Chem.
, vol.46
, pp. 3767
-
-
Henriksen, U.1
Snyder, J.P.2
Halgren, T.A.3
-
14
-
-
0000304537
-
-
Brown, H. C.; Jadhav, P. K.; Bhat, K. S. J. Am. Chem. Soc. 1985, 107, 2564
-
(1985)
J. Am. Chem. Soc.
, vol.107
, pp. 2564
-
-
Brown, H.C.1
Jadhav, P.K.2
Bhat, K.S.3
-
15
-
-
0009639047
-
-
Wang, K. K.; Gu, Y. G.; Liu, C. J. Am. Chem. Soc. 1990, 112, 4424
-
(1990)
J. Am. Chem. Soc.
, vol.112
, pp. 4424
-
-
Wang, K.K.1
Gu, Y.G.2
Liu, C.3
-
18
-
-
33846436053
-
-
Fang, G. Y.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2007, 46, 359
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 359
-
-
Fang, G.Y.1
Aggarwal, V.K.2
-
19
-
-
33846410251
-
-
Canales, E.; González, A. Z.; Soderquist, J. A. Angew. Chem., Int. Ed. 2007, 46, 397
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 397
-
-
Canales, E.1
González, A.Z.2
Soderquist, J.A.3
-
21
-
-
79952576246
-
-
Gaussian 03, Revision D.01; Gaussian, Inc.: Wallingford, CT,. See the Supporting Information for the full reference.
-
Frisch, M. J. Gaussian 03, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2004. See the Supporting Information for the full reference.
-
(2004)
-
-
Frisch, M.J.1
-
22
-
-
79952588677
-
-
Jaguar, version 7.7, Schrodinger, LLC, New York, NY.
-
Jaguar, version 7.7, Schrodinger, LLC, New York, NY, 2010.
-
(2010)
-
-
-
23
-
-
79952588477
-
-
Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT,. See the Supporting Information for full reference.
-
Frisch, M. J. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, 2009. See the Supporting Information for full reference.
-
(2009)
-
-
Frisch, M.J.1
-
24
-
-
0035975473
-
-
Check, C. E.; Faust, T. O.; Bailey, J. M.; Wright, B. J.; Gilbert, T. M.; Sunderlin, L. S. J. Phys. Chem. A 2001, 105, 8111
-
(2001)
J. Phys. Chem. A
, vol.105
, pp. 8111
-
-
Check, C.E.1
Faust, T.O.2
Bailey, J.M.3
Wright, B.J.4
Gilbert, T.M.5
Sunderlin, L.S.6
-
25
-
-
79952578516
-
-
Keywords gdftmed = -14, gdftfine = -14, and gdftgrad = -14 were used to generate a very dense grid.
-
Keywords gdftmed = -14, gdftfine = -14, and gdftgrad = -14 were used to generate a very dense grid.
-
-
-
-
27
-
-
79952591764
-
-
Hydroboration of allenylstannane 1 (1 equiv) with 9-BBN (0.5 equiv) was carried out at 0 °C for 5 h. The structure of the resulting allylborane was deduced based on the allylboration product of hydrocinnamaldehyde. See the Supporting Information for details.
-
Hydroboration of allenylstannane 1 (1 equiv) with 9-BBN (0.5 equiv) was carried out at 0 °C for 5 h. The structure of the resulting allylborane was deduced based on the allylboration product of hydrocinnamaldehyde. See the Supporting Information for details.
-
-
-
-
28
-
-
79952587652
-
-
Diastereoselective rearrangment of (Z)-δ-stannylallylborane 2a can result in either 3a or 3a′. We previously showed (ref 2) that the 1,3-boratropic shift transition state leading to 3a is 2.2 kcal/mol lower than the barrier leading to 3a′. However, 3a′ is slightly more stable thermodynamically than 3a (ca. 2:1 experimentally).
-
Diastereoselective rearrangment of (Z)-δ-stannylallylborane 2a can result in either 3a or 3a′. We previously showed (ref 2) that the 1,3-boratropic shift transition state leading to 3a is 2.2 kcal/mol lower than the barrier leading to 3a′. However, 3a′ is slightly more stable thermodynamically than 3a (ca. 2:1 experimentally).
-
-
-
-
32
-
-
33845556096
-
-
Yamamoto, Y.; Yatagai, H.; Maruyama, K. J. Am. Chem. Soc. 1981, 103, 3229
-
(1981)
J. Am. Chem. Soc.
, vol.103
, pp. 3229
-
-
Yamamoto, Y.1
Yatagai, H.2
Maruyama, K.3
-
34
-
-
0000602888
-
-
Lambert, J. B.; Wang, G. T.; Teramura, D. H. J. Org. Chem. 1988, 53, 5422
-
(1988)
J. Org. Chem.
, vol.53
, pp. 5422
-
-
Lambert, J.B.1
Wang, G.T.2
Teramura, D.H.3
-
36
-
-
0000378082
-
-
Nguyen, K. A.; Gordon, M. S.; Wang, G.-T.; Lambert, J. B. Organometallics 1991, 10, 2798
-
(1991)
Organometallics
, vol.10
, pp. 2798
-
-
Nguyen, K.A.1
Gordon, M.S.2
Wang, G.-T.3
Lambert, J.B.4
-
38
-
-
0032900270
-
-
references cited therein
-
Lambert, J. B.; Zhao, Y.; Emblidge, R. W.; Salvador, L. A.; Liu, X.; So, J.-H.; Chelius, E. C. Acc. Chem. Res. 1999, 32, 183 and references cited therein
-
(1999)
Acc. Chem. Res.
, vol.32
, pp. 183
-
-
Lambert, J.B.1
Zhao, Y.2
Emblidge, R.W.3
Salvador, L.A.4
Liu, X.5
So, J.-H.6
Chelius, E.C.7
-
39
-
-
0037174399
-
-
Schormann, M.; Garratt, S.; Hughes, D. L.; Green, J. C.; Bochmann, M. J. Am. Chem. Soc. 2002, 124, 11266
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 11266
-
-
Schormann, M.1
Garratt, S.2
Hughes, D.L.3
Green, J.C.4
Bochmann, M.5
-
40
-
-
0037467134
-
-
Müller, T.; Bauch, C.; Ostermeier, M.; Bolte, M.; Auner, N. J. Am. Chem. Soc. 2003, 125, 2158
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 2158
-
-
Müller, T.1
Bauch, C.2
Ostermeier, M.3
Bolte, M.4
Auner, N.5
|