메뉴 건너뛰기




Volumn 102, Issue 8, 2011, Pages 5098-5104

Enhancement in current density and energy conversion efficiency of 3-dimensional MFC anodes using pre-enriched consortium and continuous supply of electron donors

Author keywords

Biofilm forming; Direct electron transfer; Electro active; Microbial fuel cell; Shear flow

Indexed keywords

3-DIMENSIONAL; BIOLOGICAL CHARACTERIZATION; CARBON LOADINGS; CARBON SOURCE; COULOMBIC EFFICIENCY; DIRECT ELECTRON TRANSFER; ELECTRO-ACTIVE; ELECTRON DONORS; FLOWTHROUGH; MAXIMUM CURRENT DENSITY; MICROBIAL CONSORTIA; POWER DENSITIES;

EID: 79952533739     PISSN: 09608524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.biortech.2011.01.045     Document Type: Article
Times cited : (40)

References (27)
  • 1
    • 77952043068 scopus 로고    scopus 로고
    • Assessment of the impact of flow rate and ionic strength on performance of microbial fuel cells using electrochemical impedance spectroscopy
    • Aaron D.S., Tsouris C., Hamilton C.Y., Borole A.P. Assessment of the impact of flow rate and ionic strength on performance of microbial fuel cells using electrochemical impedance spectroscopy. Energies 2010, 3:592.
    • (2010) Energies , vol.3 , pp. 592
    • Aaron, D.S.1    Tsouris, C.2    Hamilton, C.Y.3    Borole, A.P.4
  • 2
    • 50349093076 scopus 로고    scopus 로고
    • Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes
    • Aelterman P., Versichele M., Marzorati M., Boon N., Verstraete W. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresour. Technol. 2008, 99:8895-8902.
    • (2008) Bioresour. Technol. , vol.99 , pp. 8895-8902
    • Aelterman, P.1    Versichele, M.2    Marzorati, M.3    Boon, N.4    Verstraete, W.5
  • 3
    • 0033831747 scopus 로고    scopus 로고
    • Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site
    • Bond P.L., Smriga S.P., Banfield J.F. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl. Environ. Microbiol. 2000, 66:3842-3849.
    • (2000) Appl. Environ. Microbiol. , vol.66 , pp. 3842-3849
    • Bond, P.L.1    Smriga, S.P.2    Banfield, J.F.3
  • 4
    • 77950418669 scopus 로고    scopus 로고
    • Understanding long term changes in microbial fuel cells using electrochemical impedance spectroscopy
    • Borole A.P., Aaron D.S., Tsouris C., Hamilton C.Y. Understanding long term changes in microbial fuel cells using electrochemical impedance spectroscopy. Environ. Sci. Technol. 2010, 44:2740-2745.
    • (2010) Environ. Sci. Technol. , vol.44 , pp. 2740-2745
    • Borole, A.P.1    Aaron, D.S.2    Tsouris, C.3    Hamilton, C.Y.4
  • 5
    • 71549167238 scopus 로고    scopus 로고
    • Investigating microbial fuel cell bioanode performance under different cathode conditions
    • Borole A.P., Hamilton C.Y., Aaron D.S., Tsouris C. Investigating microbial fuel cell bioanode performance under different cathode conditions. Biot. Prog. 2009, 25:1630-1636.
    • (2009) Biot. Prog. , vol.25 , pp. 1630-1636
    • Borole, A.P.1    Hamilton, C.Y.2    Aaron, D.S.3    Tsouris, C.4
  • 6
    • 71549134021 scopus 로고    scopus 로고
    • Improving power production from acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in continuous flow systems
    • Borole A.P., Hamilton C.Y., Vishnivetskaya T.A., Leak D., Andras C. Improving power production from acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in continuous flow systems. Biochem. Eng. J. 2009, 48:71-80.
    • (2009) Biochem. Eng. J. , vol.48 , pp. 71-80
    • Borole, A.P.1    Hamilton, C.Y.2    Vishnivetskaya, T.A.3    Leak, D.4    Andras, C.5
  • 8
    • 34548451055 scopus 로고    scopus 로고
    • Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration
    • Fan Y., Hu H., Liu H. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J. Power Sources 2007, 171:348-354.
    • (2007) J. Power Sources , vol.171 , pp. 348-354
    • Fan, Y.1    Hu, H.2    Liu, H.3
  • 9
    • 55349136222 scopus 로고    scopus 로고
    • Quantification of the internal resistance distribution of microbial fuel cells
    • Fan Y.Z., Sharbrough E., Liu H. Quantification of the internal resistance distribution of microbial fuel cells. Environ. Sci. Technol. 2008, 42:8101-8107.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 8101-8107
    • Fan, Y.Z.1    Sharbrough, E.2    Liu, H.3
  • 10
    • 33748549027 scopus 로고    scopus 로고
    • An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance Spectroscopy
    • He Z., Wagner N., Minteer S.D., Angenent L.T. An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance Spectroscopy. Environ. Sci. Technol. 2006, 40:5212-5217.
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 5212-5217
    • He, Z.1    Wagner, N.2    Minteer, S.D.3    Angenent, L.T.4
  • 11
    • 77957348875 scopus 로고    scopus 로고
    • Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells
    • Huang L., Regan J.M., Quan X. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour. Technol. 2011, 102:316-323.
    • (2011) Bioresour. Technol. , vol.102 , pp. 316-323
    • Huang, L.1    Regan, J.M.2    Quan, X.3
  • 12
    • 77955851595 scopus 로고    scopus 로고
    • Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera
    • Kiely P.D., Call D.F., Yates M.D., Regan J.M., Logan B.E. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Appl. Microbiol. Biotechnol. 2010, 88:371-380.
    • (2010) Appl. Microbiol. Biotechnol. , vol.88 , pp. 371-380
    • Kiely, P.D.1    Call, D.F.2    Yates, M.D.3    Regan, J.M.4    Logan, B.E.5
  • 14
    • 36249022670 scopus 로고    scopus 로고
    • Composition and distribution of internal resistance in three types of microbial fuel cells
    • Liang P., Huang X., Fan M.Z., Cao X.X. Composition and distribution of internal resistance in three types of microbial fuel cells. Appl. Microbiol. Biotechnol. 2007, 77:551-558.
    • (2007) Appl. Microbiol. Biotechnol. , vol.77 , pp. 551-558
    • Liang, P.1    Huang, X.2    Fan, M.Z.3    Cao, X.X.4
  • 15
    • 63449116002 scopus 로고    scopus 로고
    • Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure
    • Liu Y., Harnisch F., Fricke K., Sietmann R., Schroder U. Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure. Biosens. Bioelectron. 2008, 24:1006-1011.
    • (2008) Biosens. Bioelectron. , vol.24 , pp. 1006-1011
    • Liu, Y.1    Harnisch, F.2    Fricke, K.3    Sietmann, R.4    Schroder, U.5
  • 16
    • 76849084828 scopus 로고    scopus 로고
    • Scaling up microbial fuel cells and other bioelectrochemical systems
    • Logan B.E. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol. 2010, 85:1665-1671.
    • (2010) Appl. Microbiol. Biotechnol. , vol.85 , pp. 1665-1671
    • Logan, B.E.1
  • 19
    • 4544262280 scopus 로고    scopus 로고
    • Cathode performance as a factor in electricity generation in microbial fuel cells
    • Oh S., Min B., Logan B.E. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 2004, 38:4900-4904.
    • (2004) Environ. Sci. Technol. , vol.38 , pp. 4900-4904
    • Oh, S.1    Min, B.2    Logan, B.E.3
  • 21
    • 19444367096 scopus 로고    scopus 로고
    • Microbial fuel cells: novel biotechnology for energy generation
    • Rabaey K., Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005, 23:291.
    • (2005) Trends Biotechnol. , vol.23 , pp. 291
    • Rabaey, K.1    Verstraete, W.2
  • 23
    • 77957376223 scopus 로고    scopus 로고
    • Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells
    • Rismani-Yazdi H., Christy A.D., Carver S.M., Yu Z., Dehority B.A., Tuovinen O.H. Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells. Bioresour. Technol. 2011, 102:278-283.
    • (2011) Bioresour. Technol. , vol.102 , pp. 278-283
    • Rismani-Yazdi, H.1    Christy, A.D.2    Carver, S.M.3    Yu, Z.4    Dehority, B.A.5    Tuovinen, O.H.6
  • 24
    • 15444362001 scopus 로고    scopus 로고
    • Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness
    • Schloss P.D., Handelsman J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 2005, 71:1501-1506.
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 1501-1506
    • Schloss, P.D.1    Handelsman, J.2
  • 26
    • 67650085480 scopus 로고    scopus 로고
    • Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells
    • Yi H., Nevin K.P., Kim B.-C., Franks A.E., Klimes A., Tender L.M., Lovley D.R. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens. Bioelectron. 2009, 24:3498-3503.
    • (2009) Biosens. Bioelectron. , vol.24 , pp. 3498-3503
    • Yi, H.1    Nevin, K.P.2    Kim, B.-C.3    Franks, A.E.4    Klimes, A.5    Tender, L.M.6    Lovley, D.R.7
  • 27
    • 77957372857 scopus 로고    scopus 로고
    • Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes
    • Zhang X., Cheng S., Liang P., Huang X., Logan B.E. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes. Bioresour. Technol. 2011, 102:372-375.
    • (2011) Bioresour. Technol. , vol.102 , pp. 372-375
    • Zhang, X.1    Cheng, S.2    Liang, P.3    Huang, X.4    Logan, B.E.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.