메뉴 건너뛰기




Volumn 137, Issue 655, 2011, Pages 435-451

State and parameter estimation with the extended Kalman filter: An alternative formulation of the model error dynamics

Author keywords

Data Assimilation; Model Error

Indexed keywords

DATA ASSIMILATION; ERROR COVARIANCE MATRIX; ESTIMATED PARAMETER; FORWARD PROPAGATION; MODEL ERROR; MODEL ERRORS; MODEL PARAMETERS; PARAMETRIC ERRORS; PERFECT MODEL; TAYLOR EXPANSIONS; UNCERTAIN PARAMETERS; UNSTABLE DYNAMICS; VARIABLE MODEL;

EID: 79952524167     PISSN: 00359009     EISSN: 1477870X     Source Type: Journal    
DOI: 10.1002/qj.762     Document Type: Article
Times cited : (42)

References (55)
  • 1
    • 33750467661 scopus 로고    scopus 로고
    • Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model
    • Aksoy A, Zhang F, Nielsen-Gammon JW. 2006. Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model. Mon. Weather Rev. 134: 2951-2970.
    • (2006) Mon. Weather Rev. , vol.134 , pp. 2951-2970
    • Aksoy, A.1    Zhang, F.2    Nielsen-Gammon, J.3
  • 2
    • 0035655814 scopus 로고    scopus 로고
    • An ensemble adjustment Kalman filter for data assimilation
    • Anderson JL. 2001. An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev. 129: 2884-2903.
    • (2001) Mon. Weather Rev. , vol.129 , pp. 2884-2903
    • Anderson, J.1
  • 3
    • 0033500692 scopus 로고    scopus 로고
    • A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts
    • Anderson JL, Anderson SL. 1999. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Weather Rev. 127: 2741-2758.
    • (1999) Mon. Weather Rev. , vol.127 , pp. 2741-2758
    • Anderson, J.1    Anderson, S.2
  • 4
    • 8744246331 scopus 로고    scopus 로고
    • Efficient parameter estimation for a highly chaotic system
    • Annan JD, Hargreaves JC. 2004. Efficient parameter estimation for a highly chaotic system. Tellus 56A: 520-526.
    • (2004) Tellus , vol.56 A , pp. 520-526
    • Annan, J.1    Hargreaves, J.2
  • 5
    • 3343006936 scopus 로고    scopus 로고
    • Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter
    • Annan JD, Hargreaves JC, Edwards NR, Marsh R. 2005. Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter. Ocean Modelling 8: 135-154.
    • (2005) Ocean Modelling , vol.8 , pp. 135-154
    • Annan, J.1    Hargreaves, J.2    Edwards, N.3    Marsh, R.4
  • 6
    • 0030523072 scopus 로고    scopus 로고
    • Generalized inversion of a global numerical weather prediction model
    • Bennett AF, Chua BS, Leslie LM. 1996. Generalized inversion of a global numerical weather prediction model. Meteorol. Atmos. Phys. 60: 165-178.
    • (1996) Meteorol. Atmos. Phys. , vol.60 , pp. 165-178
    • Bennett, A.1    Chua, B.2    Leslie, L.3
  • 7
    • 50949090465 scopus 로고    scopus 로고
    • Model error and sequential data assimilation. A deterministic formulation.
    • Carrassi A, Vannitsem S, Nicolis C. 2008. Model error and sequential data assimilation. A deterministic formulation. Q. J. R. Meteorol. Soc. 134: 1297-1313.
    • (2008) Q. J. R. Meteorol. Soc. , vol.134 , pp. 1297-1313
    • Carrassi, A.1    Vannitsem, S.2    Nicolis, C.3
  • 8
    • 77958477631 scopus 로고    scopus 로고
    • Accounting for model error in variational data assimilation. A deterministic formulation.
    • Carrassi A, Vannitsem S. 2010. Accounting for model error in variational data assimilation. A deterministic formulation. Mon. Weather Rev. 138: 3369-3386.
    • (2010) Mon. Weather Rev. , vol.138 , pp. 3369-3386
    • Carrassi, A.1    Vannitsem, S.2
  • 9
    • 0000725538 scopus 로고
    • Observability of discretized partial differential equations
    • Cohn SE, Dee DP. 1988. Observability of discretized partial differential equations. SIAM J. Numer. Anal. 25: 586-617.
    • (1988) SIAM J. Numer. Anal. , vol.25 , pp. 586-617
    • Cohn, S.1    Dee, D.2
  • 10
    • 84981633097 scopus 로고
    • Error growth and predictability in operational ECMWF forecasts
    • Dalcher A, Kalnay E. 1987. Error growth and predictability in operational ECMWF forecasts. Tellus 39A: 474-491.
    • (1987) Tellus , vol.39 A , pp. 474-491
    • Dalcher, A.1    Kalnay, E.2
  • 11
    • 0034016058 scopus 로고    scopus 로고
    • Reducing systematic error by empirically correcting model errors
    • D'Andrea F, Vautard R. 2000. Reducing systematic error by empirically correcting model errors. Tellus 52A: 21-41.
    • (2000) Tellus , vol.52 A , pp. 21-41
    • D'Andrea, F.1    Vautard, R.2
  • 12
    • 33847379878 scopus 로고    scopus 로고
    • Estimating and correcting global weather model error
    • Danforth CM, Kalnay E, Miyoshi T. 2007. Estimating and correcting global weather model error. Mon. Weather Rev. 135: 281-299.
    • (2007) Mon. Weather Rev. , vol.135 , pp. 281-299
    • Danforth, C.1    Kalnay, E.2    Miyoshi, T.3
  • 13
    • 33846868359 scopus 로고    scopus 로고
    • Bias and data assimilation
    • Dee D. 2005. Bias and data assimilation. Q. J. R. Meteorol. Soc. 131: 3323-3343.
    • (2005) Q. J. R. Meteorol. Soc. , vol.131 , pp. 3323-3343
    • Dee, D.1
  • 14
    • 0000674568 scopus 로고    scopus 로고
    • Data assimilation in the presence of forecast bias
    • Dee D, Da Silva A. 1998. Data assimilation in the presence of forecast bias. Q. J. R. Meteorol. Soc. 117: 269-295.
    • (1998) Q. J. R. Meteorol. Soc. , vol.117 , pp. 269-295
    • Dee, D.1    Da Silva, A.2
  • 15
    • 0024907683 scopus 로고
    • A variational continuous assimilation technique
    • Derber J. 1989. A variational continuous assimilation technique. Mon. Weather Rev. 117: 2437-2446.
    • (1989) Mon. Weather Rev. , vol.117 , pp. 2437-2446
    • Derber, J.1
  • 16
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics
    • C5 -
    • Evensen G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. J. Geophys. Res. 99C5 10143-10162.
    • (1994) J. Geophys. Res. , vol.99 , pp. 10143-10162
    • Evensen, G.1
  • 17
    • 0014552637 scopus 로고
    • Treatment of bias in recursive filtering
    • Friedland B. 1969. Treatment of bias in recursive filtering. IEEE Trans. Automat. Contr. AC-14: 359-367.
    • (1969) IEEE Trans. Automat. Contr. , vol.AC 14 , pp. 359-367
    • Friedland, B.1
  • 18
    • 34249707809 scopus 로고    scopus 로고
    • Surface data assimilation using an Ensemble Kalman Filter approach with initial condition and model physics uncertainties
    • Fujita T, Stensrud DJ, Dowell DC. 2007. Surface data assimilation using an Ensemble Kalman Filter approach with initial condition and model physics uncertainties. Mon. Weather Rev. 135: 1846-1868.
    • (2007) Mon. Weather Rev. , vol.135 , pp. 1846-1868
    • Fujita, T.1    Stensrud, D.2    Dowell, D.3
  • 20
    • 0034433022 scopus 로고    scopus 로고
    • Adjoint methods in data assimilation for estimating model error
    • Griffith A, Nichols N. 2000. Adjoint methods in data assimilation for estimating model error. J. Flow Turbulence Combust. 65: 469-488.
    • (2000) J. Flow Turbulence Combust. , vol.65 , pp. 469-488
    • Griffith, A.1    Nichols, N.2
  • 21
    • 27744494106 scopus 로고    scopus 로고
    • Accounting for the error due to unresolved scales in ensemble data assimilation: A comparison of different approaches
    • Hamill TM, Whitaker JS. 2005. Accounting for the error due to unresolved scales in ensemble data assimilation: A comparison of different approaches. Mon. Weather Rev. 133: 3132-3147.
    • (2005) Mon. Weather Rev. , vol.133 , pp. 3132-3147
    • Hamill, T.1    Whitaker, J.2
  • 22
    • 70350302252 scopus 로고    scopus 로고
    • Model error representation in an operational Ensemble Kalman Filter
    • Houtekamer PL, Mitchell HL, Deng X. 2009. Model error representation in an operational Ensemble Kalman Filter. Mon. Weather Rev. 137: 2126-2143.
    • (2009) Mon. Weather Rev. , vol.137 , pp. 2126-2143
    • Houtekamer, P.1    Mitchell, H.2    Deng, X.3
  • 23
    • 34248675795 scopus 로고    scopus 로고
    • Efficient data assimilation for spatio-temporal chaos: A local ensemble transform Kalman filter
    • Hunt BR, Kostelich E, Szunyogh I. 2007. Efficient data assimilation for spatio-temporal chaos: A local ensemble transform Kalman filter. Physica D 230: 112-126.
    • (2007) Physica D , vol.230 , pp. 112-126
    • Hunt, B.1    Kostelich, E.2    Szunyogh, I.3
  • 24
    • 0003440756 scopus 로고
    • Stochastic Processes and Filtering Theory
    • Academic Press.
    • Jazwinski AH. 1970. Stochastic Processes and Filtering Theory. Academic Press.
    • (1970)
    • Jazwinski, A.1
  • 25
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman R. 1960. A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82: 35-45.
    • (1960) Trans. ASME J. Basic Eng. , vol.82 , pp. 35-45
    • Kalman, R.1
  • 26
    • 0008510807 scopus 로고    scopus 로고
    • Atmospheric modeling, data assimilation and predictability
    • Cambridge University Press: Cambridge.
    • Kalnay E. 2003. Atmospheric modeling, data assimilation and predictability. Cambridge University Press: Cambridge.
    • (2003)
    • Kalnay, E.1
  • 27
    • 37249052805 scopus 로고    scopus 로고
    • Kalman filter technique to estimate relativistic electron lifetimes in the outer radiation belt
    • Kondrashov D, Shprits Y, Ghil M, Thorne R. 2007. Kalman filter technique to estimate relativistic electron lifetimes in the outer radiation belt. J. Geophys. Res. 112: A10227.
    • (2007) J. Geophys. Res. , vol.112
    • Kondrashov, D.1    Shprits, Y.2    Ghil, M.3    Thorne, R.4
  • 28
    • 64149102810 scopus 로고    scopus 로고
    • Data assimilation for a coupled ocean-atmosphere model. Part II: Parameter estimation.
    • Kondrashov D, Sun C, Ghil M. 2008. Data assimilation for a coupled ocean-atmosphere model. Part II: Parameter estimation. Mon. Weather Rev. 136: 5062-5076.
    • (2008) Mon. Weather Rev. , vol.136 , pp. 5062-5076
    • Kondrashov, D.1    Sun, C.2    Ghil, M.3
  • 29
    • 77958565843 scopus 로고    scopus 로고
    • Reducing forecast errors due to model imperfections using ensemble Kalman filtering
    • Koyama H, Watanabe M. 2010. Reducing forecast errors due to model imperfections using ensemble Kalman filtering. Mon. Weather Rev. 138: 3316-3332.
    • (2010) Mon. Weather Rev. , vol.138 , pp. 3316-3332
    • Koyama, H.1    Watanabe, M.2
  • 30
    • 0022842584 scopus 로고
    • Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects
    • Le Dimet FX, Talagrand O. 1986. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus 38A: 97-110.
    • (1986) Tellus , vol.38 A , pp. 97-110
    • Le Dimet, F.1    Talagrand, O.2
  • 31
    • 70449106810 scopus 로고    scopus 로고
    • Accounting for model errors in ensemble data assimilation
    • Li H, Kalnay E, Miyoshi T, Danforth CM. 2009. Accounting for model errors in ensemble data assimilation. Mon. Weather Rev. 137: 3407-3419.
    • (2009) Mon. Weather Rev. , vol.137 , pp. 3407-3419
    • Li, H.1    Kalnay, E.2    Miyoshi, T.3    Danforth, C.4
  • 32
    • 0000241853 scopus 로고
    • Deterministic non-periodic flows
    • Lorenz EN. 1963. Deterministic non-periodic flows. J. Atmos. Sci. 20: 130-141.
    • (1963) J. Atmos. Sci. , vol.20 , pp. 130-141
    • Lorenz, E.1
  • 33
    • 0001846226 scopus 로고    scopus 로고
    • Proceedings of Seminar on Predictability
    • In, ECMWF: Reading, UK.
    • Lorenz EN. 1996. Predictability: A problem partly solved. In Proceedings of Seminar on Predictability, Vol. 1. ECMWF: Reading, UK. 1-18
    • (1996) Predictability: A problem partly solved , vol.1 , pp. 1-18
    • Lorenz, E.1
  • 34
    • 34248364831 scopus 로고    scopus 로고
    • Test of an Ensemble Kalman Filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments.
    • Meng Z, Zhang F. 2007. Test of an Ensemble Kalman Filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Weather Rev. 135: 1403-1423.
    • (2007) Mon. Weather Rev. , vol.135 , pp. 1403-1423
    • Meng, Z.1    Zhang, F.2
  • 35
    • 0034082826 scopus 로고    scopus 로고
    • An adaptive ensemble Kalman filter
    • Mitchell H, Houtekamer PL. 2000. An adaptive ensemble Kalman filter. Mon. Weather Rev. 128: 416-433.
    • (2000) Mon. Weather Rev. , vol.128 , pp. 416-433
    • Mitchell, H.1    Houtekamer, P.2
  • 36
    • 0031944948 scopus 로고    scopus 로고
    • Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography
    • Navon IM. 1997. Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography. Dyn. Atmos. Oceans 27: 55-79.
    • (1997) Dyn. Atmos. Oceans , vol.27 , pp. 55-79
    • Navon, I.1
  • 37
    • 0141460773 scopus 로고    scopus 로고
    • Dynamics of model error: Some generic features
    • Nicolis C. 2003. Dynamics of model error: Some generic features. J. Atmos. Sci. 60: 2208-2218.
    • (2003) J. Atmos. Sci. , vol.60 , pp. 2208-2218
    • Nicolis, C.1
  • 38
    • 4344605261 scopus 로고    scopus 로고
    • Dynamics of model error: The role of unresolved scales revisited
    • Nicolis C. 2004. Dynamics of model error: The role of unresolved scales revisited. J. Atmos. Sci. 61: 1740-1753.
    • (2004) J. Atmos. Sci. , vol.61 , pp. 1740-1753
    • Nicolis, C.1
  • 39
    • 69849105686 scopus 로고    scopus 로고
    • Dynamics of prediction errors under the combined effect of initial condition and model errors
    • Nicolis C, Perdigao R, Vannitsem S. 2009. Dynamics of prediction errors under the combined effect of initial condition and model errors. J. Atmos. Sci. 66: 766-778.
    • (2009) J. Atmos. Sci. , vol.66 , pp. 766-778
    • Nicolis, C.1    Perdigao, R.2    Vannitsem, S.3
  • 41
    • 0031742114 scopus 로고    scopus 로고
    • A singular evolutive extended Kalman filter for data assimilation in oceanography
    • Pham DT, Verron J, Roubaud MC. 1998. A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Marine Sys. 16: 323-340.
    • (1998) J. Marine Sys. , vol.16 , pp. 323-340
    • Pham, D.1    Verron, J.2    Roubaud, M.3
  • 42
    • 0028583430 scopus 로고
    • Random error growth in NMC's global forecasts
    • Reynolds C, Webster PJ, Kalnay E. 1994. Random error growth in NMC's global forecasts. Mon. Weather Rev. 122: 1281-1305.
    • (1994) Mon. Weather Rev. , vol.122 , pp. 1281-1305
    • Reynolds, C.1    Webster, P.2    Kalnay, E.3
  • 43
    • 77952907470 scopus 로고    scopus 로고
    • Evaluation of the observation operator Jacobian for leaf area index data assimilation with an extended Kalman filter
    • Rüdiger C, Albergel C, Mahfouf J-F, Calvet J-C, Walker JP. 2010. Evaluation of the observation operator Jacobian for leaf area index data assimilation with an extended Kalman filter. J. Geophys. Res. 115: D09111.
    • (2010) J. Geophys. Res. , vol.115
    • Rüdiger, C.1    Albergel, C.2    Mahfouf, J.-F.3    Calvet, J.-C.4    Walker, J.5
  • 44
    • 0000783155 scopus 로고
    • Some basic formalism in numerical variational analysis
    • Sasaki Y. 1970. Some basic formalism in numerical variational analysis. Mon. Weather Rev. 98: 875-883.
    • (1970) Mon. Weather Rev. , vol.98 , pp. 875-883
    • Sasaki, Y.1
  • 45
    • 0000097719 scopus 로고    scopus 로고
    • Assimilation of observations: An introduction
    • Talagrand O. 1997. Assimilation of observations: An introduction. J. Meteorol. Soc. Japan 75: 191-209.
    • (1997) J. Meteorol. Soc. Japan , vol.75 , pp. 191-209
    • Talagrand, O.1
  • 46
    • 33846869913 scopus 로고    scopus 로고
    • Accounting for an imperfect model in 4D-Var
    • Trémolet Y. 2006. Accounting for an imperfect model in 4D-Var. Q. J. R. Meteorol. Soc. 132: 2483-2504.
    • (2006) Q. J. R. Meteorol. Soc. , vol.132 , pp. 2483-2504
    • Trémolet, Y.1
  • 47
    • 34548215235 scopus 로고    scopus 로고
    • Model error estimation in 4D-Var
    • Trémolet Y. 2007. Model error estimation in 4D-Var. Q. J. R. Meteorol. Soc. 133: 1267-1280.
    • (2007) Q. J. R. Meteorol. Soc. , vol.133 , pp. 1267-1280
    • Trémolet, Y.1
  • 48
    • 0024189823 scopus 로고
    • The reliability of improvements in deterministic short-range forecasts in the presence of initial state and modeling deficiencies
    • Tribbia JJ, Baumhefner DP. 1988. The reliability of improvements in deterministic short-range forecasts in the presence of initial state and modeling deficiencies. Mon. Weather Rev. 116: 2276-2288.
    • (1988) Mon. Weather Rev. , vol.116 , pp. 2276-2288
    • Tribbia, J.1    Baumhefner, D.2
  • 49
    • 0036733281 scopus 로고    scopus 로고
    • Short-term dynamics of model errors
    • Vannitsem S, Toth Z. 2002. Short-term dynamics of model errors. J. Atmos. Sci. 59: 2594-2604.
    • (2002) J. Atmos. Sci. , vol.59 , pp. 2594-2604
    • Vannitsem, S.1    Toth, Z.2
  • 50
    • 2042450809 scopus 로고    scopus 로고
    • Variational data analysis with control of the forecast bias
    • Vidard PA, Piacentini A, Le Dimet F-X. 2004. Variational data analysis with control of the forecast bias. Tellus 56A: 177-188.
    • (2004) Tellus , vol.56 A , pp. 177-188
    • Vidard, P.1    Piacentini, A.2    Le Dimet, F.-X.3
  • 51
    • 44449095043 scopus 로고    scopus 로고
    • Ensemble data assimilation with the NCEP Global Forecast System
    • Whitaker JS, Hamill TM, Wei X, Song Y, Toth Z. 2008. Ensemble data assimilation with the NCEP Global Forecast System. Mon. Weather Rev. 126: 463-482.
    • (2008) Mon. Weather Rev. , vol.126 , pp. 463-482
    • Whitaker, J.1    Hamill, T.2    Wei, X.3    Song, Y.4    Toth, Z.5
  • 52
    • 77249111719 scopus 로고    scopus 로고
    • Using the ensemble Kalman filter to estimate multiplicative model parameters
    • Yang X, Delsole T. 2009. Using the ensemble Kalman filter to estimate multiplicative model parameters. Tellus 61A: 601-609.
    • (2009) Tellus , vol.61 A , pp. 601-609
    • Yang, X.1    Delsole, T.2
  • 53
    • 0000755764 scopus 로고    scopus 로고
    • A general weak constraint applicable to operational 4D-VAR data assimilation systems
    • Zupanski D. 1997. A general weak constraint applicable to operational 4D-VAR data assimilation systems. Mon. Weather Rev. 125: 2274-2292.
    • (1997) Mon. Weather Rev. , vol.125 , pp. 2274-2292
    • Zupanski, D.1
  • 54
    • 33644881232 scopus 로고    scopus 로고
    • Model error estimation employing ensemble data assimilation approach
    • Zupanski D, Zupanski M. 2006. Model error estimation employing ensemble data assimilation approach. Mon. Weather Rev. 134: 1337-1354.
    • (2006) Mon. Weather Rev. , vol.134 , pp. 1337-1354
    • Zupanski, D.1    Zupanski, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.