메뉴 건너뛰기




Volumn 138, Issue 9, 2010, Pages 3369-3386

Accounting for model error in variational data assimilation: A deterministic formulation

Author keywords

[No Author keywords available]

Indexed keywords

CHAOTIC DYNAMICS; DATA ASSIMILATION; DETERMINISTIC MODELS; FOUR-DIMENSIONAL VARIATIONAL DATA ASSIMILATION; GAUSSIANS; INITIAL CONDITIONS; LARGE SYSTEM; LORENZ MODEL; MODEL ERRORS; NATURAL SYSTEMS; PREDICTION ACCURACY; THREE-COMPONENT; UNCORRELATED NOISE; UNSTABLE SYSTEM; VARIATIONAL ASSIMILATION; VARIATIONAL DATA ASSIMILATION;

EID: 77958477631     PISSN: 00270644     EISSN: None     Source Type: Journal    
DOI: 10.1175/2010MWR3192.1     Document Type: Article
Times cited : (43)

References (31)
  • 2
    • 70350337808 scopus 로고    scopus 로고
    • Towards optimal choices of control space representation for geophysical data assimilation
    • Bocquet, M., 2009: Towards optimal choices of control space representation for geophysical data assimilation. Mon. Wea. Rev., 137, 2331-2348.
    • (2009) Mon. Wea. Rev. , vol.137 , pp. 2331-2348
    • Bocquet, M.1
  • 3
    • 50949090465 scopus 로고    scopus 로고
    • Model error and sequential data assimilation:Adeterministic formulation
    • Carrassi, A., S. Vannitsem, and C. Nicolis, 2008: Model error and sequential data assimilation:Adeterministic formulation. Quart. J. Roy. Meteor. Soc., 134, 1297-1313.
    • (2008) Quart. J. Roy. Meteor. Soc. , vol.134 , pp. 1297-1313
    • Carrassi, A.1    Vannitsem, S.2    Nicolis, C.3
  • 4
    • 0000991256 scopus 로고
    • Online estimation of error covariance parameters for atmospheric data assimilation
    • Dee, D. P., 1995: Online estimation of error covariance parameters for atmospheric data assimilation.Mon.Wea. Rev., 123, 1128-1145.
    • (1995) Mon. Wea. Rev. , vol.123 , pp. 1128-1145
    • Dee, D.P.1
  • 5
    • 0024907683 scopus 로고
    • A variational continuous assimilation technique
    • Derber, J., 1989: A variational continuous assimilation technique. Mon. Wea. Rev., 117, 2437-2446.
    • (1989) Mon. Wea. Rev. , vol.117 , pp. 2437-2446
    • Derber, J.1
  • 6
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasigeostrophic model using Monte-Carlo methods to forecast error statistics
    • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasigeostrophic model using Monte-Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 143-10 162.
    • (1994) J. Geophys. Res. , vol.99 , Issue.C5
    • Evensen, G.1
  • 7
    • 34249707809 scopus 로고    scopus 로고
    • Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainties
    • Fujita, T., D. J. Stensrud, and D. C. Dowell, 2007: Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainties. Mon. Wea. Rev., 135, 1846-1868.
    • (2007) Mon. Wea. Rev. , vol.135 , pp. 1846-1868
    • Fujita, T.1    Stensrud, D.J.2    Dowell, D.C.3
  • 8
    • 0003098460 scopus 로고
    • Application of estimation theory to numerical weather prediction
    • L. Bengtsson, M. Ghil, and E. Källén, Eds., Springer
    • Ghil, M., S. E. Cohn, J. Tavantzis, K. Bube, and E. Isaacson, 1981: Application of estimation theory to numerical weather prediction. Dynamic Meteorology: Data Assimilation Methods, L. Bengtsson, M. Ghil, and E. Källén, Eds., Springer, 139-224.
    • (1981) Dynamic Meteorology: Data Assimilation Methods , pp. 139-224
    • Ghil, M.1    Cohn, S.E.2    Tavantzis, J.3    Bube, K.4    Isaacson, E.5
  • 9
    • 27744494106 scopus 로고    scopus 로고
    • Accounting for the error due to unresolved scales in ensemble data assimilation: A comparison of different approaches
    • Hamill, T. M., and J. S. Whitaker, 2005: Accounting for the error due to unresolved scales in ensemble data assimilation: A comparison of different approaches. Mon. Wea. Rev., 133, 3132-3147.
    • (2005) Mon. Wea. Rev. , vol.133 , pp. 3132-3147
    • Hamill, T.M.1    Whitaker, J.S.2
  • 10
    • 70350302252 scopus 로고    scopus 로고
    • Model error representation in an operational ensemble Kalman filter
    • Houtekamer, P. L., H. L. Mitchell, and X. Deng, 2009: Model error representation in an operational ensemble Kalman filter. Mon. Wea. Rev., 137, 2126-2143.
    • (2009) Mon. Wea. Rev. , vol.137 , pp. 2126-2143
    • Houtekamer, P.L.1    Mitchell, H.L.2    Deng, X.3
  • 11
    • 34248675795 scopus 로고    scopus 로고
    • Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter
    • Hunt, B. R., E. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112-126.
    • (2007) Physica D , vol.230 , pp. 112-126
    • Hunt, B.R.1    Kostelich, E.2    Szunyogh, I.3
  • 13
    • 85024429815 scopus 로고
    • Anew approach to linear filtering and prediction problems
    • Kalman, R., 1960:Anew approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng., 82, 35-45.
    • (1960) Trans. ASME J. Basic Eng. , vol.82 , pp. 35-45
    • Kalman, R.1
  • 14
    • 0022842584 scopus 로고
    • Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects
    • Le Dimet, F. X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A, 97-110.
    • (1986) Tellus , vol.38 A , pp. 97-110
    • Le Dimet, F.X.1    Talagrand, O.2
  • 15
    • 84977708932 scopus 로고
    • The use of adjoint equations to solve a variational adjustment problem with advective constraint
    • Lewis, J. M., and J. C. Derber, 1985: The use of adjoint equations to solve a variational adjustment problem with advective constraint. Tellus, 37A, 309-322.
    • (1985) Tellus , vol.37 A , pp. 309-322
    • Lewis, J.M.1    Derber, J.C.2
  • 16
    • 70449106810 scopus 로고    scopus 로고
    • Accounting for model errors in ensemble data assimilation
    • Li, H., E. Kalnay, T. Miyoshi, and C. M. Danforth, 2009: Accounting for model errors in ensemble data assimilation. Mon. Wea. Rev., 137, 3407-3419.
    • (2009) Mon. Wea. Rev. , vol.137 , pp. 3407-3419
    • Li, H.1    Kalnay, E.2    Miyoshi, T.3    Danforth, C.M.4
  • 17
    • 0000241853 scopus 로고
    • Deterministic non-periodic flows
    • Lorenz, E. N., 1963: Deterministic non-periodic flows. J. Atmos. Sci., 20, 130-141.
    • (1963) J. Atmos. Sci. , vol.20 , pp. 130-141
    • Lorenz, E.N.1
  • 18
    • 34248364831 scopus 로고    scopus 로고
    • Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments
    • Meng, Z., and F. Zhang, 2007: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Wea. Rev., 135, 1403-1423.
    • (2007) Mon. Wea. Rev. , vol.135 , pp. 1403-1423
    • Meng, Z.1    Zhang, F.2
  • 19
    • 0141460773 scopus 로고    scopus 로고
    • Dynamics of model error: Some generic features
    • Nicolis, C., 2003: Dynamics of model error: Some generic features. J. Atmos. Sci., 60, 2208-2218.
    • (2003) J. Atmos. Sci. , vol.60 , pp. 2208-2218
    • Nicolis, C.1
  • 20
    • 4344605261 scopus 로고    scopus 로고
    • Dynamics of model error: The role of unresolved scales revisited
    • Nicolis, C., 2004: Dynamics of model error: The role of unresolved scales revisited. J. Atmos. Sci., 61, 1740-1753.
    • (2004) J. Atmos. Sci. , vol.61 , pp. 1740-1753
    • Nicolis, C.1
  • 21
    • 69849105686 scopus 로고    scopus 로고
    • Dynamics of prediction errors under the combined effect of initial condition and model errors
    • Nicolis, C., R. Perdigao, and S. Vannitsem, 2009: Dynamics of prediction errors under the combined effect of initial condition and model errors. J. Atmos. Sci., 66, 766-778.
    • (2009) J. Atmos. Sci. , vol.66 , pp. 766-778
    • Nicolis, C.1    Perdigao, R.2    Vannitsem, S.3
  • 22
    • 0342804504 scopus 로고    scopus 로고
    • The ECMWF operational implementation of fourdimensional variational assimilation. Part I: Experimental results with simplified physics
    • Rabier, F., H. Järvinen, E. Klinker, J.-F.Mahfouf, and A. Simmons, 2000: The ECMWF operational implementation of fourdimensional variational assimilation. Part I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126, 1143-1170.
    • (2000) Quart. J. Roy. Meteor. Soc. , vol.126 , pp. 1143-1170
    • Rabier, F.1    Järvinen, H.2    Klinker, E.3    Mahfouf, J.-F.4    Simmons, A.5
  • 23
    • 0028583430 scopus 로고
    • Random error growth in NMC's global forecasts
    • Reynolds, C., P. J. Webster, and E. Kalnay, 1994: Random error growth in NMC's global forecasts. Mon. Wea. Rev., 122, 1281-1305.
    • (1994) Mon. Wea. Rev. , vol.122 , pp. 1281-1305
    • Reynolds, C.1    Webster, P.J.2    Kalnay, E.3
  • 24
    • 0000783155 scopus 로고
    • Some basic formalism in numerical variational analysis
    • Sasaki, Y., 1970: Some basic formalism in numerical variational analysis. Mon. Wea. Rev., 98, 875-883.
    • (1970) Mon. Wea. Rev. , vol.98 , pp. 875-883
    • Sasaki, Y.1
  • 25
    • 0023128058 scopus 로고
    • Variational assimilation of meteorological observations with the adjoint vorticity equation
    • Talagrand, O., and P. Courtier, 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Quart. J. Roy. Meteor. Soc., 113, 1311-1328.
    • (1987) I: Theory. Quart. J. Roy. Meteor. Soc. , vol.113 , pp. 1311-1328
    • Talagrand, O.1    Courtier, P.2
  • 26
    • 33846869913 scopus 로고    scopus 로고
    • Accounting for an imperfect model in 4D-Var
    • Trémolet, Y., 2006: Accounting for an imperfect model in 4D-Var. Quart. J. Roy. Meteor. Soc., 132, 2483-2504.
    • (2006) Quart. J. Roy. Meteor. Soc. , vol.132 , pp. 2483-2504
    • Trémolet, Y.1
  • 27
    • 34548215235 scopus 로고    scopus 로고
    • Model error estimation in 4D-Var
    • Trémolet, Y., 2007: Model error estimation in 4D-Var. Quart. J. Roy. Meteor. Soc., 133, 1267-1280.
    • (2007) Quart. J. Roy. Meteor. Soc. , vol.133 , pp. 1267-1280
    • Trémolet, Y.1
  • 28
    • 0033853855 scopus 로고    scopus 로고
    • Time-space weak-constraint data assimilation for nonlinear models
    • Uboldi, F., and M. Kamachi, 2000: Time-space weak-constraint data assimilation for nonlinear models. Tellus, 52A, 412-421.
    • (2000) Tellus , vol.52 A , pp. 412-421
    • Uboldi, F.1    Kamachi, M.2
  • 29
    • 0036733281 scopus 로고    scopus 로고
    • Short-term dynamics of model errors
    • Vannitsem, S., and Z. Toth, 2002: Short-term dynamics of model errors. J. Atmos. Sci., 59, 2594-2604.
    • (2002) J. Atmos. Sci. , vol.59 , pp. 2594-2604
    • Vannitsem, S.1    Toth, Z.2
  • 30
    • 2042450809 scopus 로고    scopus 로고
    • Variational data analysis with control of the forecast bias
    • Vidard, P. A., A. Piacentini, and F.-X. Le Dimet, 2004: Variational data analysis with control of the forecast bias. Tellus, 56, 177-188.
    • (2004) Tellus , vol.56 , pp. 177-188
    • Vidard, P.A.1    Piacentini, A.2    Le Dimet, F.-X.3
  • 31
    • 0000755764 scopus 로고    scopus 로고
    • A general weak constraint applicable to operational 4DVAR data assimilation systems
    • Zupanski, D., 1997: A general weak constraint applicable to operational 4DVAR data assimilation systems. Mon. Wea. Rev., 125, 2274-2292.
    • (1997) Mon. Wea. Rev. , vol.125 , pp. 2274-2292
    • Zupanski, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.