-
1
-
-
2642663684
-
Weighted vs. unweighted mean performance of varieties across environments
-
Bernardo, R. 1992. Weighted vs. unweighted mean performance of varieties across environments. Crop Sci. 32:490-492.
-
(1992)
Crop Sci
, vol.32
, pp. 490-492
-
-
Bernardo, R.1
-
2
-
-
0028152101
-
Relationships among analytical methods used to study genotypic variation and genotype-byenvironment interaction in plant breeding multi-environment experiments. Theor. Appl
-
Cooper, M., and I.H. DeLacy. 1994. Relationships among analytical methods used to study genotypic variation and genotype-byenvironment interaction in plant breeding multi-environment experiments. Theor. Appl. Genet. 88:561-572.
-
(1994)
Genet
, vol.88
, pp. 561-572
-
-
Cooper, M.1
Delacy, I.H.2
-
3
-
-
0003001160
-
AMMI adjustment for statistical analysis of international wheat yield trial
-
Crossa, J., P.N. Fox, W.H. Pfeifer, S. Rajaram, and H.G. Gauch. 1991. AMMI adjustment for statistical analysis of international wheat yield trial. Theor. Appl. Genet. 81:27-37.
-
(1991)
Theor. Appl Genet
, vol.81
, pp. 27-37
-
-
Crossa, J.1
Fox, P.N.2
Pfeifer, W.H.3
Rajaram, S.4
Gauch, H.G.5
-
4
-
-
0000160989
-
Additive main effects and multiplicative interaction analysis of two international maize cultivar trials
-
Crossa, J., H.G. Gauch, and R.W. Zobel. 1990. Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop Sci. 30:493-500.
-
(1990)
Crop Sci
, vol.30
, pp. 493-500
-
-
Crossa, J.1
Gauch, H.G.2
Zobel, R.W.3
-
5
-
-
0038034110
-
Model selection and cross validation in additive main eff ect and multiplicative interaction models
-
Dias, C.T.S., and W.J. Krzanowski. 2003. Model selection and cross validation in additive main eff ect and multiplicative interaction models. Crop Sci. 43:865-873.
-
(2003)
Crop Sci
, vol.43
, pp. 865-873
-
-
Dias, C.T.S.1
Krzanowski, W.J.2
-
6
-
-
33644982095
-
Bayesian modeling of heterogeneous error and genotype x environment interaction variances
-
Edwards, J.W., and J.-L. Jannink. 2006. Bayesian modeling of heterogeneous error and genotype x environment interaction variances. Crop Sci. 46:820-833.
-
(2006)
Crop Sci
, vol.46
, pp. 820-833
-
-
Edwards, J.W.1
Jannink, J.-L.2
-
7
-
-
0000502954
-
Model selection and validation for yield trials with interaction
-
Gauch, H.G. 1988. Model selection and validation for yield trials with interaction. Biometrics 44:705-715.
-
(1988)
Biometrics
, vol.44
, pp. 705-715
-
-
Gauch, H.G.1
-
8
-
-
0001844297
-
Predictive and postdictive success of statistical analyses of yield trials
-
Gauch, H.G., and R.W. Zobel. 1988. Predictive and postdictive success of statistical analyses of yield trials. Theor. Appl. Genet. 76:1-10.
-
(1988)
Theor. Appl Genet
, vol.76
, pp. 1-10
-
-
Gauch, H.G.1
Zobel, R.W.2
-
9
-
-
0002040725
-
AMMI analysis of yield trials
-
M.S. Kang and H.G. Gauch (ed.) CRC Press, Boca Raton, FL
-
Gauch, H.G., and R.W. Zobel. 1996. AMMI analysis of yield trials. In Genotype by environment interaction. M.S. Kang and H.G. Gauch (ed.) CRC Press, Boca Raton, FL.
-
(1996)
Genotype By Environment Interaction
-
-
Gauch, H.G.1
Zobel, R.W.2
-
11
-
-
0028190836
-
Best linear unbiased prediction (BLUP) for regional yield trials- a comparison to additive main effects and multiplicative interaction (AMMI) analysis
-
Piepho, H.P. 1994. Best linear unbiased prediction (BLUP) for regional yield trials- a comparison to additive main effects and multiplicative interaction (AMMI) analysis. Theor. Appl. Genet. 89:647-654.
-
(1994)
Theor. Appl. Genet
, vol.89
, pp. 647-654
-
-
Piepho, H.P.1
-
12
-
-
8744296509
-
-
SAS Institute, SAS Inst., Cary, NC
-
SAS Institute. 2004. SAS/STAT 9.1 user's guide. SAS Inst., Cary, NC.
-
(2004)
SAS/STAT 9.1 user's guide
-
-
-
13
-
-
70349198954
-
A comparison of mixed-model analyses of the Iowa Crop Performance Test for Corn
-
So, Y.-S., and J. Edwards. 2009. A comparison of mixed-model analyses of the Iowa Crop Performance Test for Corn. Crop Sci. 49:1593-1601.
-
(2009)
Crop Sci
, vol.49
, pp. 1593-1601
-
-
So, Y.-S.1
Edwards, J.2
|