메뉴 건너뛰기




Volumn 49, Issue 5, 2009, Pages 1593-1601

A comparison of mixed-model analyses of the iowa crop performance test for corn

Author keywords

[No Author keywords available]

Indexed keywords

ZEA MAYS;

EID: 70349198954     PISSN: 0011183X     EISSN: None     Source Type: Journal    
DOI: 10.2135/cropsci2008.09.0574     Document Type: Article
Times cited : (19)

References (27)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • In E.B.N. Petrov and F. Csaki (ed.), 2nd, Tsahkadsor, Armenia. 2-8 Sept. 1971
    • Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. p. 267. In E.B.N. Petrov and F. Csaki (ed.) Int. Symp. on Information Theory and Control, 2nd, Tsahkadsor, Armenia. 2-8 Sept. 1971.
    • (1973) Int. Symp. on Information Theory and Control , pp. 267
    • Akaike, H.1
  • 2
    • 0033998210 scopus 로고    scopus 로고
    • Selection response in subdivided target regions
    • Atlin, G.N., R.J. Baker, K.B. Mcrae, and X. Lu. 2000. Selection response in subdivided target regions. Crop Sci. 40:7-13.
    • (2000) Crop Sci , vol.40 , pp. 7-13
    • Atlin, G.N.1    Baker, R.J.2    McRae, K.B.3    Lu, X.4
  • 3
    • 0001123035 scopus 로고
    • Tests for crossover genotype-environmental interactions
    • Baker, R.J. 1988. Tests for crossover genotype-environmental interactions. Can. J. Plant Sci. 48:405-410.
    • (1988) Can. J. Plant Sci. , vol.48 , pp. 405-410
    • Baker, R.J.1
  • 5
    • 0028152101 scopus 로고
    • Relationships among analytical methods used to study genotypic variation and genotype-by-environment interaction in plant-breeding multi environment experiments
    • Cooper, M., and I.H. Delacy. 1994. Relationships among analytical methods used to study genotypic variation and genotype-by-environment interaction in plant-breeding multi environment experiments. Theor. Appl. Genet. 88:561-572.
    • (1994) Theor. Appl. Genet. , vol.88 , pp. 561-572
    • Cooper, M.1    Delacy, I.H.2
  • 6
    • 33746061693 scopus 로고    scopus 로고
    • Modeling genotype × environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes
    • Crossa, J., J. Burgueno, P.L. Cornelius, G. McLaren, R. Trethowan, and A. Krishnamachari. 2006. Modeling genotype × environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes. Crop Sci. 46:1722-1733.
    • (2006) Crop Sci , vol.46 , pp. 1722-1733
    • Crossa, J.1    Burgueno, J.2    Cornelius, P.L.3    McLaren, G.4    Trethowan, R.5    Krishnamachari, A.6
  • 7
    • 0030892374 scopus 로고    scopus 로고
    • Sites regression and shifted multiplicative model clustering of cultivar trial sites under heterogeneity of error variances
    • Crossa, J., and P.L. Cornelius. 1997. Sites regression and shifted multiplicative model clustering of cultivar trial sites under heterogeneity of error variances. Crop Sci. 37:406-415.
    • (1997) Crop Sci , vol.37 , pp. 406-415
    • Crossa, J.1    Cornelius, P.L.2
  • 8
    • 33847018604 scopus 로고    scopus 로고
    • John Wiley & Sons, Hoboken, NJ
    • Demidenko, E. 2004. Mixed models. John Wiley & Sons, Hoboken, NJ.
    • (2004) Mixed models
    • Demidenko, E.1
  • 9
    • 33644982095 scopus 로고    scopus 로고
    • Bayesian modeling of heterogeneous error and genotype × environment interaction variances
    • Edwards, J.W., and J.-L. Jannink. 2006. Bayesian modeling of heterogeneous error and genotype × environment interaction variances. Crop Sci. 46:820-833.
    • (2006) Crop Sci , vol.46 , pp. 820-833
    • Edwards, J.W.1    Jannink, J.-L.2
  • 10
    • 0000502954 scopus 로고
    • Model selection and validation for yield trials with interaction
    • Gauch, H.G. 1988. Model selection and validation for yield trials with interaction. Biometrics 44:705-715.
    • (1988) Biometrics , vol.44 , pp. 705-715
    • Gauch, H.G.1
  • 12
    • 33644693277 scopus 로고    scopus 로고
    • Selecting the best linear mixed model under REML
    • Gurka, M.J. 2006. Selecting the best linear mixed model under REML. Am. Stat. 60:19-26.
    • (2006) Am. Stat. , vol.60 , pp. 19-26
    • Gurka, M.J.1
  • 14
    • 0018084894 scopus 로고
    • Probabilities of non-positive definite between-group or genetic covariance matrices
    • Hill, W.G., and R. Thompson. 1978. Probabilities of non-positive definite between-group or genetic covariance matrices. Biometrics 34:429-439.
    • (1978) Biometrics , vol.34 , pp. 429-439
    • Hill, W.G.1    Thompson, R.2
  • 15
    • 33644988886 scopus 로고    scopus 로고
    • Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc Mixed
    • Holland, J.B. 2006. Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc Mixed. Crop Sci. 46:642-654.
    • (2006) Crop Sci , vol.46 , pp. 642-654
    • Holland, J.B.1
  • 16
    • 70349206080 scopus 로고    scopus 로고
    • Iowa Crop Improvement Association, Iowa State Univ. Extension, Iowa State Univ., Ames
    • Iowa Crop Improvement Association. 2005. Iowa Crop Performance Tests-Corn. Rep. PM660. Iowa State Univ. Extension, Iowa State Univ., Ames.
    • (2005) Iowa Crop Performance Tests-Corn. Rep. PM660
  • 17
    • 34248378510 scopus 로고    scopus 로고
    • The accuracy of varietal selection using factor analytic models for multi-environment plant breeding trials
    • Kelly, A.M., A.B. Smith, J.A. Eccleston, and B.R. Cullis. 2007. The accuracy of varietal selection using factor analytic models for multi-environment plant breeding trials. Crop Sci. 47:1063-1070.
    • (2007) Crop Sci , vol.47 , pp. 1063-1070
    • Kelly, A.M.1    Smith, A.B.2    Eccleston, J.A.3    Cullis, B.R.4
  • 18
    • 0032044405 scopus 로고    scopus 로고
    • Statistical analysis of repeated measures data using SAS procedures
    • Littell, R.C., P.R. Henry, and C.B. Ammerman. 1998. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 76:1216-1231.
    • (1998) J. Anim. Sci. , vol.76 , pp. 1216-1231
    • Littell, R.C.1    Henry, P.R.2    Ammerman, C.B.3
  • 19
    • 0031874045 scopus 로고    scopus 로고
    • Empirical best linear unbiased prediction in cultivar trials using factor-analytic variance-covariance structures
    • Piepho, H.P. 1998. Empirical best linear unbiased prediction in cultivar trials using factor-analytic variance-covariance structures. Theor. Appl. Genet. 97:195-201.
    • (1998) Theor. Appl. Genet. , vol.97 , pp. 195-201
    • Piepho, H.P.1
  • 20
    • 18744366974 scopus 로고    scopus 로고
    • Best linear unbiased prediction of cultivar effects for subdivided target regions
    • Piepho, H.P., and J. Mohring. 2005. Best linear unbiased prediction of cultivar effects for subdivided target regions. Crop Sci. 45:1151-1159.
    • (2005) Crop Sci , vol.45 , pp. 1151-1159
    • Piepho, H.P.1    Mohring, J.2
  • 23
  • 24
    • 0035181008 scopus 로고    scopus 로고
    • Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend
    • Smith, A., B. Cullis, and R. Thompson. 2001. Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend. Biometrics 57:1138-1147.
    • (2001) Biometrics , vol.57 , pp. 1138-1147
    • Smith, A.1    Cullis, B.2    Thompson, R.3
  • 25
    • 30444432667 scopus 로고    scopus 로고
    • The analysis of crop cultivar breeding and evaluation trials: An overview of current mixed model approaches
    • Smith, A.B., B.R. Cullis, and R. Thompson. 2005. The analysis of crop cultivar breeding and evaluation trials: An overview of current mixed model approaches. J. Agric. Sci. 143:449-462.
    • (2005) J. Agric. Sci. , vol.143 , pp. 449-462
    • Smith, A.B.1    Cullis, B.R.2    Thompson, R.3
  • 26
    • 14044268941 scopus 로고    scopus 로고
    • Analysis of unbalanced data by mixed linear models using the MIXED procedure of the SAS system
    • Spilke, J., H.P. Piepho, and X. Hu. 2005. Analysis of unbalanced data by mixed linear models using the MIXED procedure of the SAS system. J. Agron. Crop Sci. 191:47-54.
    • (2005) J. Agron. Crop Sci. , vol.191 , pp. 47-54
    • Spilke, J.1    Piepho, H.P.2    Hu, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.