메뉴 건너뛰기




Volumn 50, Issue 2, 2011, Pages 177-194

Nonlinear model identification and adaptive model predictive control using neural networks

Author keywords

Adaptive recursive least squares; Generalized predictive control; Identification; Neural networks; Nonlinear adaptive model predictive control

Indexed keywords

FIGHTER AIRCRAFT; FLUIDIZED BED FURNACES; FLUIDIZED BEDS; IDENTIFICATION (CONTROL SYSTEMS); LEAST SQUARES APPROXIMATIONS; MODEL PREDICTIVE CONTROL; NEURAL NETWORKS; NONLINEAR SYSTEMS; PILOT PLANTS; PREDICTIVE CONTROL SYSTEMS; SUPERSONIC AIRCRAFT; TRAINING AIRCRAFT;

EID: 79952454328     PISSN: 00190578     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isatra.2010.12.007     Document Type: Article
Times cited : (110)

References (54)
  • 5
    • 77952379176 scopus 로고    scopus 로고
    • Nonlinear model predictive control: A self-adaptive approach
    • I. Dones, F. Manenti, H.A. Preisig, and G. Buzzi-Ferraris Nonlinear model predictive control: a self-adaptive approach Ind Eng Chem Res 49 10 2010 4782 4791
    • (2010) Ind Eng Chem Res , vol.49 , Issue.10 , pp. 4782-4791
    • Dones, I.1    Manenti, F.2    Preisig, H.A.3    Buzzi-Ferraris, G.4
  • 6
    • 0027545221 scopus 로고
    • Model predictive control with linear models
    • K.R. Muske, and J.B. Rawlings Model predictive control with linear models AIChE J 39 1993 262 287 (Pubitemid 272184)
    • (1993) AIChe Journal , vol.39 , Issue.2 , pp. 262-287
    • Muske, K.R.1    Rawlings, J.B.2
  • 7
    • 0028671767 scopus 로고
    • Effect of process nonlinearity on the performance of linear model predictive controllers for the environmentally safe operation of a fluid catalytic cracking unit
    • L. Kalra, and C. Georgakis Effects of process nonlinearity on the performance of linear model predictive controllers for the environmentally safe operation of a fluid catalytic cracking unit Ind Eng Chem Res 33 1994 3063 3069 (Pubitemid 288539)
    • (1994) Industrial & Engineering Chemistry Research , vol.33 , Issue.12 , pp. 3063-3069
    • Kalra, L.1    Georgakis, C.2
  • 8
    • 70449367453 scopus 로고    scopus 로고
    • Adaptive neural network predictive control based on PSO algorithm
    • Su C, Wu Y. Adaptive neural network predictive control based on PSO algorithm. In: Chinese control and decision conference. 2009. p. 582933.
    • (2009) Chinese Control and Decision Conference , pp. 5829-5833
    • Su, C.1    Wu, Y.2
  • 14
    • 33646725472 scopus 로고    scopus 로고
    • Adaptive and predictive control of liquidliquid extractors using neural-based instantaneous linearization technique
    • F.S. Mjalli Adaptive and predictive control of liquidliquid extractors using neural-based instantaneous linearization technique Chem Eng Technol 29 5 2006 539 549
    • (2006) Chem Eng Technol , vol.29 , Issue.5 , pp. 539-549
    • Mjalli, F.S.1
  • 15
    • 33747679800 scopus 로고    scopus 로고
    • Neural model adaptation and predictive control of a chemical process rig
    • DOI 10.1109/TCST.2006.876906
    • D.L. Yu, D.W. Yu, and J.B. Gomm Neural model adaptation and predictive control of a chemical process rig IEEE Trans Control Syst Technol 14 5 2006 828 840 (Pubitemid 44268879)
    • (2006) IEEE Transactions on Control Systems Technology , vol.14 , Issue.5 , pp. 828-840
    • Yu, D.-L.1    Yu, D.-W.2    Gomm, J.B.3
  • 16
    • 57649124534 scopus 로고    scopus 로고
    • Adaptive model predictive control using diagonal recurrent neural network
    • Jin Y, Su C. Adaptive model predictive control using diagonal recurrent neural network. In: Fourth International Conference on Natural Computation. 2008. p. 27680.
    • (2008) Fourth International Conference on Natural Computation , pp. 276-280
    • Jin, Y.1    Su, C.2
  • 20
    • 49149131955 scopus 로고    scopus 로고
    • Beyond feedforward models trained by backpropagation: A practical training tool for a more efficient universal approximator
    • R. Ilin, R. Kozma, and P.J. Werbos Beyond feedforward models trained by backpropagation: a practical training tool for a more efficient universal approximator IEEE Trans Neural Netw 19 6 2008 929 937
    • (2008) IEEE Trans Neural Netw , vol.19 , Issue.6 , pp. 929-937
    • Ilin, R.1    Kozma, R.2    Werbos, P.J.3
  • 22
    • 52149098162 scopus 로고    scopus 로고
    • A neural network-based model for the dynamic simulation of the tire/suspension system while traversing road irregularities
    • P. Guarneri, G. Rocca, and M. Gobbi A neural network-based model for the dynamic simulation of the tire/suspension system while traversing road irregularities IEEE Trans Neural Netw 19 9 2008 1549 1563
    • (2008) IEEE Trans Neural Netw , vol.19 , Issue.9 , pp. 1549-1563
    • Guarneri, P.1    Rocca, G.2    Gobbi, M.3
  • 23
    • 48949116212 scopus 로고    scopus 로고
    • Dynamic neural-network-based model predictive control of an industrial baker's yeast drying process
    • U. Yüzge, Y. Becerikli, and M. Türker Dynamic neural-network-based model predictive control of an industrial baker's yeast drying process IEEE Trans Neural Netw 19 7 2008 1231 1242
    • (2008) IEEE Trans Neural Netw , vol.19 , Issue.7 , pp. 1231-1242
    • Yüzge, U.1    Becerikli, Y.2    Türker, M.3
  • 24
    • 41349098601 scopus 로고    scopus 로고
    • Adaptive predictive control with recurrent neural network for industrial processes: An application to temperature control of a variable-frequency oil-cooling machine
    • DOI 10.1109/TIE.2007.896492
    • C. Lu, and C. Tsai Adaptive predictive control with recurrent neural network for industrial process: an application to temperature control of a variable-frequency oil-cooling machine IEEE Trans Ind Electron 55 3 2008 1366 1375 (Pubitemid 351447577)
    • (2008) IEEE Transactions on Industrial Electronics , vol.55 , Issue.3 , pp. 1366-1375
    • Lu, C.-H.1    Tsai, C.-C.2
  • 26
    • 34547116621 scopus 로고    scopus 로고
    • Neural control of fast nonlinear systems - Application to a turbocharged SI engine with VCT
    • DOI 10.1109/TNN.2007.899221, Neural Networks for Feedback Control Systems
    • G. Colin, Y. Chamaillard, G. Bloch, and G. Corde Neural control of fast nonlinear systemsapplication to a turbogharged SI engine with VCT IEEE Trans Neural Netw 18 4 2007 1101 1114 (Pubitemid 47098884)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.4 , pp. 1101-1114
    • Colin, G.1    Chamaillard, Y.2    Bloch, G.3    Corde, G.4
  • 28
    • 52449097557 scopus 로고    scopus 로고
    • Two neural network approaches to model predictive control
    • Pan Y, Wang J. Two neural network approaches to model predictive control. In: Proc. 2008 American Control Conference. 2008. p. 168590.
    • (2008) Proc. 2008 American Control Conference , pp. 1685-1690
    • Pan, Y.1    Wang, J.2
  • 29
    • 34047221348 scopus 로고    scopus 로고
    • A model based predictive control scheme for nonlinear process
    • 1657487, Proceedings of the 2006 American Control Conference
    • Wang J, Thomas G. A model based predictive control scheme for nonlinear process. In: Proc. 2006 American Control Conference. 2006. p. 48427. (Pubitemid 46531587)
    • (2006) Proceedings of the American Control Conference , vol.2006 , pp. 4842-4847
    • Wang, J.1    Thomas, G.2
  • 30
    • 74049131054 scopus 로고    scopus 로고
    • Model predictive control for nonlinear affine systems based on the simplified dual neural network
    • Pan Y, Wang J. Model predictive control for nonlinear affine systems based on the simplified dual neural network. In: Proc. 2009 IEEE International Symposium on Intelligent Control. 2009. p. 6838.
    • (2009) Proc. 2009 IEEE International Symposium on Intelligent Control , pp. 683-688
    • Pan, Y.1    Wang, J.2
  • 31
    • 71449115936 scopus 로고    scopus 로고
    • Model predictive control of nonlinear hybrid system based on neural network optimization
    • Zhang L, Quan S. Model predictive control of nonlinear hybrid system based on neural network optimization. In: Proc. 7th Asian Control Conference. 2009. p. 1097102.
    • (2009) Proc. 7th Asian Control Conference , pp. 1097-1102
    • Zhang, L.1    Quan, S.2
  • 32
    • 0029375851 scopus 로고
    • Gradient calculations for recurrent neural networks: A survey
    • B.A. Pearlmutter Gradient calculations for recurrent neural networks: a survey IEEE Trans Neural Netw 6 5 1995 1212 1228
    • (1995) IEEE Trans Neural Netw , vol.6 , Issue.5 , pp. 1212-1228
    • Pearlmutter, B.A.1
  • 33
    • 77649271184 scopus 로고    scopus 로고
    • On the weight convergence of Elman networks
    • Q. Song On the weight convergence of Elman networks IEEE Trans Neural Netw 21 3 2010 463 480
    • (2010) IEEE Trans Neural Netw , vol.21 , Issue.3 , pp. 463-480
    • Song, Q.1
  • 34
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Y. Bengio, P. Simard, and P. Frasconi Learning long-term dependencies with gradient descent is difficult IEEE Trans Neural Netw 5 2 1994 157 166
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 35
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R.J. Williams, and D. Zipser A learning algorithm for continually running fully recurrent neural networks Neural Comput 1 1989 270 280
    • (1989) Neural Comput , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 36
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • P.J. Werbos Backpropagation through time: what it does and how to do it Proc IEEE 78 10 1990 1550 1560
    • (1990) Proc IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 37
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D.E. Rumelhart, G.E. Hinton, and R.J. Williams Learning representations by back-propagating errors Nature 323 1986 533 536 (Pubitemid 16025374)
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 40
    • 26444616661 scopus 로고    scopus 로고
    • On-line training of neural networks: A sliding window approach for the Levenberg-Marquardt algorithm
    • Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach: First Int. Work-Conf. on the Interplay Between Natural and Artificial Computation, IWINAC 2005. Proceedings
    • F.M. Dias, A. Antunes, J. Vieira, and A.M. Mota On-line training of neural networks: a sliding window approach for the LevenbergMarquardt algorithm IWINAC 2005 LNCS 3562 2005 Springer-Verlag Berlin (Heidelberg) 577 585 (Pubitemid 41425292)
    • (2005) Lecture Notes in Computer Science , vol.3562 , Issue.PART II , pp. 577-585
    • Dias, F.M.1    Antunes, A.2    Vieira, J.3    Mota, A.M.4
  • 41
    • 0023310961 scopus 로고
    • Generalized predictive controlpart 1. The basic algorithm
    • DOI 10.1016/0005-1098(87)90087-2
    • D.W. Clarke, C. Mohtadi, and P.S. Tuffs Generalized predictive controlpart 1. The basic algorithm Automatica 23 2 1987 137 148 (Pubitemid 17600158)
    • (1987) Automatica , vol.23 , Issue.2 , pp. 137-148
    • Clarke, D.W.1    Mohtadi, C.2    Tuffs, P.S.3
  • 42
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • D.W. Marquardt An algorithm for least-squares estimation of nonlinear parameters J Soc Ind Appl Math 11 2 1963 431 441
    • (1963) J Soc Ind Appl Math , vol.11 , Issue.2 , pp. 431-441
    • Marquardt, D.W.1
  • 43
    • 0028543366 scopus 로고
    • Training feedforward network with the Marquardt algorithm
    • M.T. Hagan, and M.B. Menhaj Training feedforward network with the Marquardt algorithm IEEE Trans Neural Netw 5 6 1994 989 993
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 44
    • 0034981763 scopus 로고    scopus 로고
    • Predictive Control for industrial applications
    • DOI 10.1016/S1367-5788(01)00003-7, PII S1367578801000037
    • M.J. Grimble, and A.W. Ordys Predictive control for industrial applications Annu Rev Control 25 2001 13 24 (Pubitemid 32499024)
    • (2001) Annual Reviews in Control , vol.25 , pp. 13-24
    • Grimble, M.J.1    Ordys, A.W.2
  • 47
    • 34547133026 scopus 로고    scopus 로고
    • Training recurrent neurocontrollers for real-time applications
    • DOI 10.1109/TNN.2007.899521, Neural Networks for Feedback Control Systems
    • D.V. Prokhorov Training recurrent neurocontrollers for real-time applications IEEE Trans Neural Netw 18 4 2007 1003 1015 (Pubitemid 47098877)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.4 , pp. 1003-1015
    • Prokhorov, D.V.1
  • 51
    • 0003162836 scopus 로고
    • Recent developments in algorithms and software for trust region methods
    • J.J. Mor Recent developments in algorithms and software for trust region methods A. Bachem, M. Grtschel, B. Korte, Mathematical programming: the state of the art 1983 Springer-Verlag Berlin 258 287
    • (1983) Mathematical Programming: The State of the Art , pp. 258-287
    • Mor, J.J.1
  • 52
    • 70450047743 scopus 로고    scopus 로고
    • Model-based control of temperature and energy requirements in a fluidized furnace reactor
    • S.S. Voutetakis, P. Serferlis, S. Papadopoulou, and Y. Kyriakos Model-based control of temperature and energy requirements in a fluidized furnace reactor Energy 31 2006 2418 2427
    • (2006) Energy , vol.31 , pp. 2418-2427
    • Voutetakis, S.S.1    Serferlis, P.2    Papadopoulou, S.3    Kyriakos, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.