-
2
-
-
33947233031
-
Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering
-
Y. Bengio, J. Paiement, P. Vincent, O. Delalleau, N. L. Roux, and M. .Ouimet. Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering. In Advances in Neural Information Processing Systems, page 177, 2004.
-
(2004)
Advances in Neural Information Processing Systems
, pp. 177
-
-
Bengio, Y.1
Paiement, J.2
Vincent, P.3
Delalleau, O.4
Roux, N.L.5
Ouimet, M.6
-
3
-
-
2342543476
-
-
Technical report, Departement dinformatique et recherche operationnelle, Universite de Montreal
-
Y. Bengio, P. Vincent, and J. Paiement. Learning eigenfunctions of similarity: linking spectral clustering and kernel PCA. Technical report, Departement dinformatique et recherche operationnelle, Universite de Montreal, 2003.
-
(2003)
Learning Eigenfunctions of Similarity: Linking Spectral Clustering and Kernel PCA
-
-
Bengio, Y.1
Vincent, P.2
Paiement, J.3
-
6
-
-
32544432225
-
A kernel view of the dimensionality reduction of manifolds
-
J. Ham, D. Lee, S. Mika, and B. Schölkopf. A kernel view of the dimensionality reduction of manifolds. In International Conference on Machine Learning, pages 47-53, 2004.
-
(2004)
International Conference on Machine Learning
, pp. 47-53
-
-
Ham, J.1
Lee, D.2
Mika, S.3
Schölkopf, B.4
-
12
-
-
33645661292
-
Statistical shape analysis using kernel PCA
-
Y. Rathi, S. Dambreville, and A. Tannenbaum. Statistical shape analysis using kernel PCA. In Proceedings of SPIE, volume 6064, pages 425-432, 2006.
-
(2006)
Proceedings of SPIE
, vol.6064
, pp. 425-432
-
-
Rathi, Y.1
Dambreville, S.2
Tannenbaum, A.3
-
13
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323, 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323
-
-
Roweis, S.1
Saul, L.2
-
14
-
-
2342517502
-
Think globally, fit locally: Unsupervised learning of low dimensional manifolds
-
L. Saul and S. Roweis. Think globally, fit locally: unsupervised learning of low dimensional manifolds. The Journal of Machine Learning Research, 4:119-155, 2003.
-
(2003)
The Journal of Machine Learning Research
, vol.4
, pp. 119-155
-
-
Saul, L.1
Roweis, S.2
-
16
-
-
0032594954
-
Input space vs. feature space in kernel-based methods
-
B. Schölkopf, S. Mika, C. Burges, P. Knirsch, K. Muller, G. Ratsch, and A. Smola. Input space vs. feature space in kernel-based methods. IEEE Transactions on Neural Networks, pages 1000-1017, 1999.
-
(1999)
IEEE Transactions on Neural Networks
, pp. 1000-1017
-
-
Schölkopf, B.1
Mika, S.2
Burges, C.3
Knirsch, P.4
Muller, K.5
Ratsch, G.6
Smola, A.7
-
17
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
B. Scholköpf, A. Smola, and K.-R. Muller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, pages 1299-1319, 1998.
-
(1998)
Neural Computation
, pp. 1299-1319
-
-
Scholköpf, B.1
Smola, A.2
Muller, K.-R.3
-
18
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
J. Tenenbaum, V. Silva, and J. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319, 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319
-
-
Tenenbaum, J.1
Silva, V.2
Langford, J.3
-
19
-
-
0039722607
-
The effect of the input density distribution on kernel-based classifiers
-
C. Williams and M. Seeger. The effect of the input density distribution on kernel-based classifiers. In International Conference on Machine Learning, pages 1159-1166, 2000.
-
(2000)
International Conference on Machine Learning
, pp. 1159-1166
-
-
Williams, C.1
Seeger, M.2
|