메뉴 건너뛰기




Volumn , Issue , 2010, Pages 921-924

Pre-image problem in manifold learning and dimensional reduction methods

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION METHODS; DIMENSIONAL REDUCTION; EIGENVALUE DECOMPOSITION; INPUT SPACE; KERNEL MATRICES; KERNEL PRINCIPAL COMPONENT ANALYSIS; LEARNING METHODS; LOW DIMENSIONAL EMBEDDING; MANIFOLD LEARNING; PRE-IMAGE PROBLEM; TEST POINTS; TEST SAMPLES; TRAINING SAMPLE;

EID: 79952409031     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMLA.2010.146     Document Type: Conference Paper
Times cited : (4)

References (21)
  • 7
    • 9244258603 scopus 로고    scopus 로고
    • The pre-image problem in kernel methods
    • J. Kwok and I. Tsang. The pre-image problem in kernel methods. IEEE Transactions on Neural Networks, 15(6):1517-1525, 2004.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.6 , pp. 1517-1525
    • Kwok, J.1    Tsang, I.2
  • 12
    • 33645661292 scopus 로고    scopus 로고
    • Statistical shape analysis using kernel PCA
    • Y. Rathi, S. Dambreville, and A. Tannenbaum. Statistical shape analysis using kernel PCA. In Proceedings of SPIE, volume 6064, pages 425-432, 2006.
    • (2006) Proceedings of SPIE , vol.6064 , pp. 425-432
    • Rathi, Y.1    Dambreville, S.2    Tannenbaum, A.3
  • 13
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323
    • Roweis, S.1    Saul, L.2
  • 14
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional manifolds
    • L. Saul and S. Roweis. Think globally, fit locally: unsupervised learning of low dimensional manifolds. The Journal of Machine Learning Research, 4:119-155, 2003.
    • (2003) The Journal of Machine Learning Research , vol.4 , pp. 119-155
    • Saul, L.1    Roweis, S.2
  • 17
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Scholköpf, A. Smola, and K.-R. Muller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, pages 1299-1319, 1998.
    • (1998) Neural Computation , pp. 1299-1319
    • Scholköpf, B.1    Smola, A.2    Muller, K.-R.3
  • 18
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. Tenenbaum, V. Silva, and J. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319
    • Tenenbaum, J.1    Silva, V.2    Langford, J.3
  • 19
    • 0039722607 scopus 로고    scopus 로고
    • The effect of the input density distribution on kernel-based classifiers
    • C. Williams and M. Seeger. The effect of the input density distribution on kernel-based classifiers. In International Conference on Machine Learning, pages 1159-1166, 2000.
    • (2000) International Conference on Machine Learning , pp. 1159-1166
    • Williams, C.1    Seeger, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.