메뉴 건너뛰기




Volumn , Issue , 2010, Pages 109-114

Protein 8-class secondary structure prediction using conditional neural fields

Author keywords

Conditional neural fields; Eight class; Protein; Secondary structure prediction

Indexed keywords

CLASS PREDICTION; COMPLEX RELATIONSHIPS; DATA SETS; EIGHT CLASS; EVOLUTIONARY INFORMATION; NEURAL FIELDS; PROBABILISTIC GRAPHICAL MODELS; PROBABILISTIC METHODS; SECONDARY STRUCTURE PREDICTION; SECONDARY STRUCTURES; SOLVENT ACCESSIBILITY; STRUCTURE PROPERTY; WEB SERVERS;

EID: 79952396605     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BIBM.2010.5706547     Document Type: Conference Paper
Times cited : (26)

References (31)
  • 2
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features
    • W. Kabsch and C. Sander, "Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features," Biopolymers, vol. 22, no. 12, pp. 2577-2637, 1983.
    • (1983) Biopolymers , vol.22 , Issue.12 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 3
    • 0028327236 scopus 로고
    • Protein folding dynamics: The diffusion-collision model and experimental data
    • M. Karplus and D. L. Weaver, "Protein folding dynamics: The diffusion-collision model and experimental data," Protein Science, vol. 3, no. 4, pp. 650-668, 1994.
    • (1994) Protein Science , vol.3 , Issue.4 , pp. 650-668
    • Karplus, M.1    Weaver, D.L.2
  • 4
    • 0035005366 scopus 로고    scopus 로고
    • Preorganized secondary structure as an important determinant of fast protein folding
    • Jun
    • J. K. Myers and T. G. Oas, "Preorganized secondary structure as an important determinant of fast protein folding," Nat Struct Mol Biol, vol. 8, no. 6, pp. 552-558, Jun 2001.
    • (2001) Nat Struct Mol Biol , vol.8 , Issue.6 , pp. 552-558
    • Myers, J.K.1    Oas, T.G.2
  • 5
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • N. Qian and T. J. Sejnowski, "Predicting the secondary structure of globular proteins using neural network models," Journal of Molecular Biology, vol. 202, no. 4, pp. 865-884, 1988.
    • (1988) Journal of Molecular Biology , vol.202 , Issue.4 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 7
    • 0025334980 scopus 로고
    • Improvements in protein secondary structure prediction by an enhanced neural network
    • D. Kneller, F. Cohen, and R. Langridge, "Improvements in protein secondary structure prediction by an enhanced neural network," Journal of Molecular Biology, vol. 214, no. 1, pp. 171-182, 1990.
    • (1990) Journal of Molecular Biology , vol.214 , Issue.1 , pp. 171-182
    • Kneller, D.1    Cohen, F.2    Langridge, R.3
  • 8
    • 0027291015 scopus 로고
    • Prediction of protein secondary structure at better than 70% accuracy
    • B. Rost and C. Sander, "Prediction of protein secondary structure at better than 70% accuracy," Journal of Molecular Biology, vol. 232, no. 2, pp. 584-599, 1993.
    • (1993) Journal of Molecular Biology , vol.232 , Issue.2 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 9
    • 0028300741 scopus 로고
    • Combining evolutionary information and neural networks to predict protein secondary structure
    • B. Rost and C. Sander, "Combining evolutionary information and neural networks to predict protein secondary structure," Proteins: Structure, Function, and Genetics, vol. 19, no. 1, pp. 55-72, 1994.
    • (1994) Proteins: Structure, Function, and Genetics , vol.19 , Issue.1 , pp. 55-72
    • Rost, B.1    Sander, C.2
  • 10
    • 0029889988 scopus 로고    scopus 로고
    • Phd: Predicting one-dimensional protein structure by profile-based neural networks
    • Computer Methods for Macromolecular Sequence Analysis, R. F. Doolittle, Ed. Academic Press
    • B. Rost, "Phd: Predicting one-dimensional protein structure by profile-based neural networks," in Computer Methods for Macromolecular Sequence Analysis, ser. Methods in Enzymology, R. F. Doolittle, Ed. Academic Press, 1996, vol. 266, pp. 525-539.
    • (1996) Ser. Methods in Enzymology , vol.266 , pp. 525-539
    • Rost, B.1
  • 11
    • 0033106244 scopus 로고    scopus 로고
    • Evaluation and improvement of multiple sequence methods for protein secondary structure prediction
    • J. A. Cuff and G. J. Barton, "Evaluation and improvement of multiple sequence methods for protein secondary structure prediction," Proteins: Structure, Function, and Genetics, vol. 34, no. 4, pp. 508-519, 1999.
    • (1999) Proteins: Structure, Function, and Genetics , vol.34 , Issue.4 , pp. 508-519
    • Cuff, J.A.1    Barton, G.J.2
  • 12
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • D. T. Jones, "Protein secondary structure prediction based on position-specific scoring matrices," Journal of Molecular Biology, vol. 292, no. 2, pp. 195-202, 1999.
    • (1999) Journal of Molecular Biology , vol.292 , Issue.2 , pp. 195-202
    • Jones, D.T.1
  • 14
    • 0027174134 scopus 로고
    • Prediction of protein secondary structure by the hidden Markov model
    • K. Asai, S. Hayamizu, and K. Handa, "Prediction of protein secondary structure by the hidden Markov model," Bioinformatics, vol. 9, no. 2, pp. 141-146, 1993.
    • (1993) Bioinformatics , vol.9 , Issue.2 , pp. 141-146
    • Asai, K.1    Hayamizu, S.2    Handa, K.3
  • 15
    • 33745259286 scopus 로고    scopus 로고
    • Protein secondary structure prediction for a single-sequence using hidden semi-markov models
    • Z. Aydin, Y. Altunbasak, and M. Borodovsky, "Protein secondary structure prediction for a single-sequence using hidden semi-markov models," BMC Bioinformatics, vol. 7, no. 1, p. 178, 2006.
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 178
    • Aydin, Z.1    Altunbasak, Y.2    Borodovsky, M.3
  • 16
    • 0035957531 scopus 로고    scopus 로고
    • A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach
    • S. Hua and Z. Sun, "A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach," Journal of Molecular Biology, vol. 308, no. 2, pp. 397-407, 2001.
    • (2001) Journal of Molecular Biology , vol.308 , Issue.2 , pp. 397-407
    • Hua, S.1    Sun, Z.2
  • 17
    • 0141593924 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on an improved support vector machines approach
    • H. Kim and H. Park, "Protein secondary structure prediction based on an improved support vector machines approach," Protein Engineering, vol. 16, no. 8, pp. 553-560, 2003.
    • (2003) Protein Engineering , vol.16 , Issue.8 , pp. 553-560
    • Kim, H.1    Park, H.2
  • 18
    • 0141738785 scopus 로고    scopus 로고
    • Secondary structure prediction with support vector machines
    • J. J. Ward, L. J. McGuffin, B. F. Buxton, and D. T. Jones, "Secondary structure prediction with support vector machines," Bioinformatics, vol. 19, no. 13, pp. 1650-1655, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.13 , pp. 1650-1655
    • Ward, J.J.1    McGuffin, L.J.2    Buxton, B.F.3    Jones, D.T.4
  • 19
    • 1542346418 scopus 로고    scopus 로고
    • A novel method for protein secondary structure prediction using dual-layer svm and profiles
    • J. Guo, H. Chen, Z. Sun, and Y. Lin, "A novel method for protein secondary structure prediction using dual-layer svm and profiles," Proteins: Structure, Function, and Bioinformatics, vol. 54, no. 4, pp. 738-743, 2004.
    • (2004) Proteins: Structure, Function, and Bioinformatics , vol.54 , Issue.4 , pp. 738-743
    • Guo, J.1    Chen, H.2    Sun, Z.3    Lin, Y.4
  • 20
    • 50049099447 scopus 로고    scopus 로고
    • Position-specific residue preference features around the ends of helices and strands and a novel strategy for the prediction of secondary structures
    • M. Duan, M. Huang, C. Ma, L. Li, and Y. Zhou, "Position-specific residue preference features around the ends of helices and strands and a novel strategy for the prediction of secondary structures," Protein Science, vol. 17, no. 9, pp. 1505-1512, 2008.
    • (2008) Protein Science , vol.17 , Issue.9 , pp. 1505-1512
    • Duan, M.1    Huang, M.2    Ma, C.3    Li, L.4    Zhou, Y.5
  • 21
    • 0036568279 scopus 로고    scopus 로고
    • Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
    • G. Pollastri, D. Przybylski, B. Rost, and P. Baldi, "Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles," Proteins: Structure, Function, and Genetics, vol. 47, no. 2, pp. 228-235, 2002.
    • (2002) Proteins: Structure, Function, and Genetics , vol.47 , Issue.2 , pp. 228-235
    • Pollastri, G.1    Przybylski, D.2    Rost, B.3    Baldi, P.4
  • 22
    • 84863373241 scopus 로고    scopus 로고
    • Conditional neural fields
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, Eds.
    • J. Peng, L. Bo, and J. Xu, "Conditional neural fields," in Advances in Neural Information Processing Systems 22, Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, Eds., 2009, pp. 1419-1427.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 1419-1427
    • Peng, J.1    Bo, L.2    Xu, J.3
  • 26
    • 33646887390 scopus 로고
    • On the limited memory bfgs method for large scale optimization
    • D. C. Liu and J. Nocedal, "On the limited memory bfgs method for large scale optimization," Mathematical Programming, vol. 45, pp. 503-528, 1989.
    • (1989) Mathematical Programming , vol.45 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 27
    • 0035789525 scopus 로고    scopus 로고
    • Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks
    • Sep
    • J. Meiler, M. Müller, A. Zeidler, and F. Schmäschke, "Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks," Journal of Molecular Modeling, vol. 7, no. 9, pp. 360-369, Sep 2001.
    • (2001) Journal of Molecular Modeling , vol.7 , Issue.9 , pp. 360-369
    • Meiler, J.1    Müller, M.2    Zeidler, A.3    Schmäschke, F.4
  • 28
    • 33746239564 scopus 로고    scopus 로고
    • Statistical potential-based amino acid similarity matrices for aligning distantly related protein sequences
    • Y. H. Tan, H. Huang, and D. Kihara, "Statistical potential-based amino acid similarity matrices for aligning distantly related protein sequences," Proteins: Structure, Function, and Bioinformatics, vol. 64, no. 3, pp. 587-600, 2006.
    • (2006) Proteins: Structure, Function, and Bioinformatics , vol.64 , Issue.3 , pp. 587-600
    • Tan, Y.H.1    Huang, H.2    Kihara, D.3
  • 29
    • 77954196482 scopus 로고    scopus 로고
    • Low-homology protein threading
    • J. Peng and J. Xu, "Low-homology protein threading," Bioinformatics, vol. 26, no. 12, pp. i294-300, 2010.
    • (2010) Bioinformatics , vol.26 , Issue.12
    • Peng, J.1    Xu, J.2
  • 30
    • 0043180474 scopus 로고    scopus 로고
    • PISCES: A protein sequence culling server
    • G. Wang and J. Dunbrack, Roland L., "PISCES: a protein sequence culling server," Bioinformatics, vol. 19, no. 12, pp. 1589-1591, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.12 , pp. 1589-1591
    • Wang, G.1    Dunbrack, J.2    Roland, L.3
  • 31
    • 0028064006 scopus 로고
    • Redefining the goals of protein secondary structure prediction
    • B. Rost, C. Sander, and R. Schneider, "Redefining the goals of protein secondary structure prediction," Journal of Molecular Biology, vol. 235, no. 1, pp. 13 - 26, 1994.
    • (1994) Journal of Molecular Biology , vol.235 , Issue.1 , pp. 13-26
    • Rost, B.1    Sander, C.2    Schneider, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.