메뉴 건너뛰기




Volumn , Issue , 2010, Pages 828-833

Pre-processing structured data for standard machine learning algorithms by supervised graph propositionalization - A case study with medicinal chemistry datasets

Author keywords

Graph propositionalization; K nearest neighbor; Medicinal chemistry; Random forests; Structured data; Support vector machines

Indexed keywords

K-NEAREST NEIGHBOR; MEDICINAL CHEMISTRY; PROPOSITIONALIZATION; RANDOM FORESTS; STRUCTURED DATA;

EID: 79952373267     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMLA.2010.128     Document Type: Conference Paper
Times cited : (7)

References (28)
  • 2
    • 77950799695 scopus 로고    scopus 로고
    • Good and Bad Practices in Propositionalisation
    • Springer ISBN 3-540-29041-9 50-61
    • Nicolas Lachiche, "Good and Bad Practices in Propositionalisation". AI*IA 2005: 3673. Springer 2005, ISBN 3-540-29041-9 50-61
    • (2005) AI*IA 2005 , pp. 3673
    • Lachiche, N.1
  • 3
    • 1942483107 scopus 로고    scopus 로고
    • Feature construction with version spaces for biochemical applications
    • Kramer, S. and De Raedt, L., Feature construction with version spaces for biochemical applications, Proc. 18th Int. Conf. Machine Learning, 258-265, 2001
    • (2001) Proc. 18th Int. Conf. Machine Learning , pp. 258-265
    • Kramer, S.1    De Raedt, L.2
  • 4
    • 1942515438 scopus 로고    scopus 로고
    • Propositionalization approaches to relational data mining
    • S. Dězeroski, Ed. Springer-Verlag New York
    • S.Kramer, N. Lavrač and P Flach, "Propositionalization approaches to relational data mining", In S. Dězeroski, Ed. Relational Data Mining, Springer-Verlag New York, 2000, 262-286
    • (2000) Relational Data Mining , pp. 262-286
    • Kramer, S.1    Lavrač, N.2    Flach, P.3
  • 7
    • 77950828870 scopus 로고    scopus 로고
    • Relational learning Vs. propositionalization
    • ISSN 0921-7126, IOS press
    • S. Kramer, "Relational learning Vs. propositionalization", AI communications, ISSN 0921-7126, 215-281, IOS press
    • AI Communications , pp. 215-281
    • Kramer, S.1
  • 13
    • 33244496359 scopus 로고    scopus 로고
    • FIMI'03: Workshop on frequent itemset mining implementations
    • B. Goethals and M. J. Zaki, editors, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI2003)
    • B. Goethals and M. J. Zaki. "FIMI'03: Workshop on frequent itemset mining implementations. In B. Goethals and M. J. Zaki, editors, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI2003), volume 90 of CEUR Workshop Proceedings, Melbourne, Florida, USA, 19 November 2003
    • CEUR Workshop Proceedings, Melbourne, Florida, USA, 19 November 2003 , vol.90
    • Goethals, B.1    Zaki, M.J.2
  • 14
    • 55049091309 scopus 로고    scopus 로고
    • LCM ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets
    • B. Goethals, M. J. Zaki, and R. Bayardo, editors, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI 2004)
    • T. Uno, M. Kiyomi, and H. Arimura. LCM ver. 2: efficient mining algorithms for frequent/closed/maximal itemsets. In B. Goethals, M. J. Zaki, and R. Bayardo, editors, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI 2004), volume 126 of CEUR Workshop Proceedings, Brighton, UK, 1 November 2004
    • CEUR Workshop Proceedings, Brighton, UK, 1 November 2004 , vol.126
    • Uno, T.1    Kiyomi, M.2    Arimura, H.3
  • 21
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Leo Breiman, Random Forests. Machine Learning. 45(1):5-32, 2001
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 22
    • 0003120218 scopus 로고    scopus 로고
    • Fast Training of Support Vector Machines using Sequential Minimal Optimization
    • B. Schoelkopf and C. Burges and A. Smola, editors
    • J. Platt, Fast Training of Support Vector Machines using Sequential Minimal Optimization, In B. Schoelkopf and C. Burges and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning, 1998
    • (1998) Advances in Kernel Methods - Support Vector Learning
    • Platt, J.1
  • 23
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • DOI 10.1023/A:1022689900470
    • D. Aha, D. Kibler, Instance-based learning algorithms, Machine Learning. 6:37-66, 1991 (Pubitemid 21727227)
    • (1991) Machine Learning , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 28
    • 58149287952 scopus 로고    scopus 로고
    • An Extension on. "Statistical comparisons of classifiers over multiple data sets" for all Pairwise Comparisons
    • Salvador Garcia and Francisco Herrera, An Extension on. "Statistical comparisons of classifiers over multiple data sets" for all Pairwise Comparisons, Journal of Machine Learning Research, 9:2677-2694, 2008
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2677-2694
    • Garcia, S.1    Herrera, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.