-
1
-
-
34548269884
-
Weka: A machine learning workbench for data mining
-
978-0-387-24435-8© Springer, Berlin
-
Eibe Frank, Mark A.Hall, Geoffrey Holmes, Richard Kirkby, Bernhard Pfahringer, and I. H. Witten, "Weka: A machine learning workbench for data mining", Data Mining and Knowledge Discovery Handbook, 978-0-387-24435- 8© Springer, Berlin, 2005
-
(2005)
Data Mining and Knowledge Discovery Handbook
-
-
Frank, E.1
Hall, M.A.2
Holmes, G.3
Kirkby, R.4
Pfahringer, B.5
Witten, I.H.6
-
2
-
-
77950799695
-
Good and Bad Practices in Propositionalisation
-
Springer ISBN 3-540-29041-9 50-61
-
Nicolas Lachiche, "Good and Bad Practices in Propositionalisation". AI*IA 2005: 3673. Springer 2005, ISBN 3-540-29041-9 50-61
-
(2005)
AI*IA 2005
, pp. 3673
-
-
Lachiche, N.1
-
3
-
-
7044274039
-
Propositionalization for Clustering Symbolic Relational Descriptions
-
S. Matwin and C. Sammut (Eds.): ILP 2002, Springer
-
I.Bournaud, M. Courtine, and J. Zucker, "Propositionalization for Clustering Symbolic Relational Descriptions", S. Matwin and C. Sammut (Eds.): ILP 2002, LNAI 2583, pp. 1-16, 2003, Springer
-
(2003)
LNAI
, vol.2583
, pp. 1-16
-
-
Bournaud, I.1
Courtine, M.2
Zucker, J.3
-
4
-
-
84937420049
-
Transformation-based learning using multirelational aggregation
-
C. Rouveirol and M. Sebag, editors, Inductive Logic Programming, 11th International Conference, Springer
-
,M.-A. Krogel, and S. Wrobel, "Transformation-based learning using multirelational aggregation", In C. Rouveirol and M. Sebag, editors, Inductive Logic Programming, 11th International Conference, volume 2157 of Lecture Notes in Computer Science, 2001, pages 142-155. Springer
-
(2001)
Lecture Notes in Computer Science
, vol.2157
, pp. 142-155
-
-
Krogel, M.-A.1
Wrobel, S.2
-
5
-
-
1942515438
-
Propositionalization approaches to relational data mining
-
S. Dězeroski, Ed. Springer-Verlag New York
-
S.Kramer, N. Lavrač and P Flach, "Propositionalization approaches to relational data mining", In S. Dězeroski, Ed. Relational Data Mining, Springer-Verlag New York, 2000, 262-286
-
(2000)
Relational Data Mining
, pp. 262-286
-
-
Kramer, S.1
Lavrač, N.2
Flach, P.3
-
6
-
-
9444220847
-
Comparative Evaluation of Approaches to Propositionalization
-
Inductive Logic Programming
-
Mark-A. Krogel, Simon Rawles, Filip Železný, Peter A. Flach, Nada Lavrač and Stefan Wrobel, "Comparative Evaluation of Approaches to Propositionalization", Inductive Logic Programming, Lecture Notes in Computer Science Volume 2835/2003, 2003
-
(2003)
Lecture Notes in Computer Science
, vol.2835
, Issue.2003
-
-
Krogel, M.-A.1
Rawles, S.2
Železný, F.3
Flach, P.A.4
Lavrač, N.5
Wrobel, S.6
-
7
-
-
32144454875
-
Propositionalization-based relational subgroup discovery with RSD
-
February, Springer
-
F. Železný and N. Lavrač, , " Propositionalization-based relational subgroup discovery with RSD", Machine Learning, Volume 62, Numbers 1-2 / February, 2006, 33-63, Springer
-
(2006)
Machine Learning
, vol.62
, Issue.1-2
, pp. 33-63
-
-
Železný, F.1
Lavrač, N.2
-
9
-
-
77950828870
-
Relational learning Vs. propositionalization
-
ISSN 0921-7126, IOS press
-
S. Kramer, "Relational learning Vs. propositionalization", AI communications, ISSN 0921-7126, 215-281, IOS press
-
AI Communications
, pp. 215-281
-
-
Kramer, S.1
-
10
-
-
4143073317
-
Classification and Regression Trees
-
Belmont
-
L. Breiman, J. H. Friedman, R. A. Olshen and C. J .Stone, "Classification and Regression Trees", Wadsworth, Belmont, 1984
-
(1984)
Wadsworth
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
12
-
-
0035478854
-
Random forests
-
L. Breiman, "Random forests", Machine Learning, 2001, 45:5-32.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
14
-
-
77950787278
-
FIMI'03: Workshop on frequent itemset mining implementations
-
B. Goethals and M. J. Zaki, editors
-
B. Goethals and M. J. Zaki. "FIMI'03: Workshop on frequent itemset mining implementations. In B. Goethals and M. J. Zaki, editors, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI2003), volume 90 of CEUR Workshop Proceedings, Melbourne, Florida, USA, 19 November 2003
-
Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI2003), Volume 90 of CEUR Workshop Proceedings, Melbourne, Florida, USA, 19 November 2003
-
-
Goethals, B.1
Zaki, M.J.2
-
15
-
-
55049091309
-
LCM ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets
-
B. Goethals, M. J. Zaki, and R. Bayardo, editors
-
T. Uno, M. Kiyomi, and H. Arimura. LCM ver. 2: efficient mining algorithms for frequent/closed/maximal itemsets. In B. Goethals, M. J. Zaki, and R. Bayardo, editors, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI 2004), volume 126 of CEUR Workshop Proceedings, Brighton, UK, 1 November 2004
-
Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI 2004), Volume 126 of CEUR Workshop Proceedings, Brighton, UK, 1 November 2004
-
-
Uno, T.1
Kiyomi, M.2
Arimura, H.3
-
16
-
-
0003957032
-
-
2nd Edition, Morgan Kaufmann, San Francisco, USA
-
Ian H. Witten and Eibe Frank, Data Mining: Practical machine learning tools and techniques, 2nd Edition, Morgan Kaufmann, San Francisco, USA, 2005
-
(2005)
Data Mining: Practical Machine Learning Tools and Techniques
-
-
Witten, I.H.1
Frank, E.2
-
17
-
-
0035007850
-
MAFIA: A Maximal Frequent Itemset Algorithm for Transactional Database
-
Doug Burdick, Manuel Calimlim and Johannes Gehrke., "MAFIA: A Maximal Frequent Itemset Algorithm for Transactional Database" In Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, April 2001
-
Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, April 2001
-
-
Burdick, D.1
Calimlim, M.2
Gehrke, J.3
-
18
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Dem̌sar. "Statistical comparisons of classifiers over multiple data sets", Journal of Machine Learning Research, 7:1-30, 2006 (Pubitemid 43022939)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demsar, J.1
|