-
1
-
-
0001687872
-
A model of stage structured population growth with density depended time delay
-
W.G. Ajello, H.I. Freedman, and J. Wu A model of stage structured population growth with density depended time delay SIAM J. Appl. Math. 52 1992 855 869
-
(1992)
SIAM J. Appl. Math.
, vol.52
, pp. 855-869
-
-
Ajello, W.G.1
Freedman, H.I.2
Wu, J.3
-
2
-
-
0020827898
-
Solution of a functional differential equation via delayed unit step functions
-
C. Hwang Solution of a functional differential equation via delayed unit step functions Int. J. Syst. Sci. 14 9 1983 1065 1073 (Pubitemid 13603442)
-
(1983)
International Journal of Systems Science
, vol.14
, Issue.9
, pp. 1065-1073
-
-
Hwang, C.1
-
3
-
-
0020154944
-
Laguerre series solution of a functional differential equation
-
C. Hwang, and Y.-P. Shih Laguerre series solution of a functional differential equation Int. J. Syst. Sci. 13 7 1982 783 788
-
(1982)
Int. J. Syst. Sci.
, vol.13
, Issue.7
, pp. 783-788
-
-
Hwang, C.1
Shih, Y.-P.2
-
4
-
-
0003029132
-
On the application of spline functions to initial value problems with retarded argument
-
A. El-Safty, and S.M. Abo-Hasha On the application of spline functions to initial value problems with retarded argument Int. J. Comput. Math. 32 1990 173 179
-
(1990)
Int. J. Comput. Math.
, vol.32
, pp. 173-179
-
-
El-Safty, A.1
Abo-Hasha, S.M.2
-
5
-
-
33644589650
-
Solution of difference equations by using differential transform method
-
A. Arikoglu, and I. Özkol Solution of difference equations by using differential transform method Appl. Math. Comput. 174 2006 1216 1228
-
(2006)
Appl. Math. Comput.
, vol.174
, pp. 1216-1228
-
-
Arikoglu, A.1
Özkol, I.2
-
6
-
-
0003336094
-
On compactly supported solutions of a class of functional-differential equations
-
Karaganta Univ. Press
-
G. Derfel On compactly supported solutions of a class of functional-differential equations Modern Problems of Function Theory and Functional Analysis 1980 Karaganta Univ. Press 255
-
(1980)
Modern Problems of Function Theory and Functional Analysis
, pp. 255
-
-
Derfel, G.1
-
8
-
-
67651152889
-
Solutions of delay differential equations by using differential transform method
-
F. Karako, and H. Bereketolu Solutions of delay differential equations by using differential transform method Int. J. Comput. Math. 86 2009 914 923
-
(2009)
Int. J. Comput. Math.
, vol.86
, pp. 914-923
-
-
Karako, F.1
Bereketolu, H.2
-
9
-
-
57549098784
-
Rational Chebyshev tau method for solving higher-order ordinary differential equations
-
K. Parand, and M. Razzaghi Rational Chebyshev tau method for solving higher-order ordinary differential equations Int. J. Comput. Math. 81 2004 73 80
-
(2004)
Int. J. Comput. Math.
, vol.81
, pp. 73-80
-
-
Parand, K.1
Razzaghi, M.2
-
10
-
-
0034173984
-
Oscillation and nonoscillation of neutral difference equations with positive and negative coefficients
-
DOI 10.1016/S0898-1221(00)00073-0
-
X.H. Tang, J.S. Yu, and D.H. Peng Oscillation and nonoscillation of neutral difference equations with positive and negative coefficients Comput. Math. Appl. 39 2000 169 181 (Pubitemid 30576081)
-
(2000)
Computers and Mathematics with Applications
, vol.39
, Issue.7-8
, pp. 169-181
-
-
Tang, X.H.1
Yu, J.S.2
Peng, D.H.3
-
11
-
-
33846396806
-
Novel stability criteria for neutral systems with multiple time delays
-
DOI 10.1016/j.chaos.2005.12.020, PII S0960077905012130
-
W. Xiong, and J. Liang Novel stability criteria for neutral systems with multiple time delays Chaos Solitons Fract. 32 2007 1735 1741 (Pubitemid 46136964)
-
(2007)
Chaos, Solitons and Fractals
, vol.32
, Issue.5
, pp. 1735-1741
-
-
Xiong, W.1
Liang, J.2
-
12
-
-
24344492364
-
Robust synchronization of delayed neural networks based on adaptive control and parameters identification
-
DOI 10.1016/j.chaos.2005.04.022, PII S0960077905003310
-
J. Zhou, T. Chen, and L. Xiang Robust synchronization of delayed neural networks based on adaptive control and parameters identification Chaos Solitons Fract. 27 2006 905 913 (Pubitemid 41252919)
-
(2006)
Chaos, Solitons and Fractals
, vol.27
, Issue.4
, pp. 905-913
-
-
Zhou, J.1
Chen, T.2
Xiang, L.3
-
13
-
-
27144467041
-
Stability analysis for cellular neural networks with variable delays
-
DOI 10.1016/j.chaos.2005.05.026, PII S0960077905005370
-
Q. Zhang, X. Wei, and J. Xu Stability analysis for cellular neural networks with variable delays Chaos Solitons Fract. 28 2006 331 336 (Pubitemid 41491939)
-
(2006)
Chaos, Solitons and Fractals
, vol.28
, Issue.2
, pp. 331-336
-
-
Zhang, Q.1
Wei, X.2
Xu, J.3
-
14
-
-
60649114910
-
Oscillation analysis of neutral difference equations with delays
-
O. Ocalan, and O. Duman Oscillation analysis of neutral difference equations with delays Chaos Solitons Fract. 39 1 2009 261 270
-
(2009)
Chaos Solitons Fract.
, vol.39
, Issue.1
, pp. 261-270
-
-
Ocalan, O.1
Duman, O.2
-
15
-
-
42749085574
-
Invariant and attracting sets of impulsive delay difference equations with continuous variables
-
Wei Zhu Invariant and attracting sets of impulsive delay difference equations with continuous variables Comput. Math. Appl. 55 12 2008 2732 2739
-
(2008)
Comput. Math. Appl.
, vol.55
, Issue.12
, pp. 2732-2739
-
-
Zhu, W.1
-
16
-
-
85016783294
-
A method for the approximate solution of the second-order linear differential equations in terms of Taylor polynomials
-
M. Sezer A method for approximate solution of the second order linear differential equations in terms of Taylor polynomials Int. J. Math. Educ. Sci. Technol. 27 6 1996 821 834 (Pubitemid 126156135)
-
(1996)
Int. J. Math. Educ. Sci. Technol.
, vol.27
, Issue.6
, pp. 821-834
-
-
Sezer, M.1
-
17
-
-
27844560234
-
A method for the approximate solution of the high-order linear difference equations in terms of Taylor polynomials
-
DOI 10.1080/00207160512331331156
-
M. Gulsu, and M. Sezer A method for the approximate solution of the high-order linear difference equations in terms of Taylor polynomials Int. J. Comput. Math. 82 5 2005 629 642 (Pubitemid 41648294)
-
(2005)
International Journal of Computer Mathematics
, vol.82
, Issue.5
, pp. 629-642
-
-
Gulsu, M.1
Sezer, M.2
-
18
-
-
33750494875
-
Polynomial solution of the most general linear Fredholm integrodifferential-difference equations by means of Taylor matrix method
-
M. Gulsu, and M. Sezer Polynomial solution of the most general linear Fredholm integrodifferential-difference equations by means of Taylor matrix method Complex Variables 50 5 2005 367 382 (Pubitemid 40809039)
-
(2005)
Complex Variables
, vol.50
, Issue.5
, pp. 367-382
-
-
Sezer, M.1
Gulsu, M.2
-
19
-
-
27844560234
-
A method for the approximate solution of the high-order linear difference equations in terms of Taylor polynomials
-
DOI 10.1080/00207160512331331156
-
M. Gulsu, and M. Sezer A method for the approximate solution of the high-order linear difference equations in terms of Taylor polynomials Int. J. Comput. Math. 82 5 2005 629 642 (Pubitemid 41648294)
-
(2005)
International Journal of Computer Mathematics
, vol.82
, Issue.5
, pp. 629-642
-
-
Gulsu, M.1
Sezer, M.2
-
20
-
-
25644449925
-
A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations
-
. Nas, S. Yalinba, and M. Sezer A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations Int. J. Math. Educ. Sci. Technol. 31 2 2000 213 225
-
(2000)
Int. J. Math. Educ. Sci. Technol.
, vol.31
, Issue.2
, pp. 213-225
-
-
Nas, .1
Yalinba, S.2
Sezer, M.3
-
21
-
-
0008254857
-
A Taylor expansion approach for solving integral equation
-
R.P. Kanwal, and K.C. Liu A Taylor expansion approach for solving integral equation Int. J. Math. Educ. Sci. Technol. 20 3 1989 411 414
-
(1989)
Int. J. Math. Educ. Sci. Technol.
, vol.20
, Issue.3
, pp. 411-414
-
-
Kanwal, R.P.1
Liu, K.C.2
|