메뉴 건너뛰기




Volumn 55, Issue 12, 2008, Pages 2732-2739

Invariant and attracting sets of impulsive delay difference equations with continuous variables

Author keywords

Decomposition approach; Delay; Difference inequality; Impulsive; Invariant and attracting sets

Indexed keywords

DIFFERENCE EQUATIONS;

EID: 42749085574     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2007.10.020     Document Type: Article
Times cited : (16)

References (27)
  • 1
    • 0001554803 scopus 로고
    • Recent developments in the oscillation of delay differnce equations
    • Differential Equations (Colorado Springs, CO, 1989), Dekker, New York
    • Ladas G. Recent developments in the oscillation of delay differnce equations. Differential Equations (Colorado Springs, CO, 1989). Lecture Notes in Prue and Appl. Math. vol. 127 (1991), Dekker, New York 321-332
    • (1991) Lecture Notes in Prue and Appl. Math. , vol.127 , pp. 321-332
    • Ladas, G.1
  • 3
    • 8644285513 scopus 로고    scopus 로고
    • An asymptotic result for some delay difference equations with continuous variable
    • Philos CH.G., and Purnaras I.K. An asymptotic result for some delay difference equations with continuous variable. Adv. Difference Equ. 1 (2004) 1-10
    • (2004) Adv. Difference Equ. , vol.1 , pp. 1-10
    • Philos, CH.G.1    Purnaras, I.K.2
  • 4
    • 7444229299 scopus 로고    scopus 로고
    • About Lyapunov functionals construction for difference equations with continuous time
    • Shaikhet L. About Lyapunov functionals construction for difference equations with continuous time. Appl. Math. Lett. 17 (2004) 985-991
    • (2004) Appl. Math. Lett. , vol.17 , pp. 985-991
    • Shaikhet, L.1
  • 5
    • 3142753570 scopus 로고    scopus 로고
    • Construction of Lyapunov functionals for stochastic difference equations with continuous time
    • Shaikhet L. Construction of Lyapunov functionals for stochastic difference equations with continuous time. Math. Comput. Simulation 66 (2004) 509-521
    • (2004) Math. Comput. Simulation , vol.66 , pp. 509-521
    • Shaikhet, L.1
  • 6
    • 0032202711 scopus 로고    scopus 로고
    • Attractors of continuous difference equations
    • Romanenko E. Attractors of continuous difference equations. Comput. Math. Appl. 36 (1998) 377-390
    • (1998) Comput. Math. Appl. , vol.36 , pp. 377-390
    • Romanenko, E.1
  • 7
    • 0038625323 scopus 로고    scopus 로고
    • A note on oscillation of second-order nonlinear difference equation with continuous variable
    • Deng J.Q. A note on oscillation of second-order nonlinear difference equation with continuous variable. J. Math. Anal. Appl. 280 (2003) 188-194
    • (2003) J. Math. Anal. Appl. , vol.280 , pp. 188-194
    • Deng, J.Q.1
  • 8
    • 1242277397 scopus 로고    scopus 로고
    • Oscillation criteria for a class of neutral difference equations with continuous variable
    • Wu S.H., and Hou Z.Y. Oscillation criteria for a class of neutral difference equations with continuous variable. J. Math. Anal. Appl. 290 (2004) 316-323
    • (2004) J. Math. Anal. Appl. , vol.290 , pp. 316-323
    • Wu, S.H.1    Hou, Z.Y.2
  • 9
    • 0035389188 scopus 로고    scopus 로고
    • Oscillations of a class of difference equations with continuous arguments
    • Zhang B.G. Oscillations of a class of difference equations with continuous arguments. Appl. Math. Lett. 14 (2001) 557-561
    • (2001) Appl. Math. Lett. , vol.14 , pp. 557-561
    • Zhang, B.G.1
  • 10
    • 0002958557 scopus 로고
    • Oscillatory properties of linear difference equations with continuous time
    • Domshlak Y. Oscillatory properties of linear difference equations with continuous time. Differential Equations Dynam. Systems 1 (1993) 311-324
    • (1993) Differential Equations Dynam. Systems , vol.1 , pp. 311-324
    • Domshlak, Y.1
  • 11
    • 0001954256 scopus 로고
    • Necessary and sufficient conditions for the oscillation of difference equations
    • Ladas G., Pakula L., and Wang Z. Necessary and sufficient conditions for the oscillation of difference equations. Panamer. Math. J. 2 (1992) 17-26
    • (1992) Panamer. Math. J. , vol.2 , pp. 17-26
    • Ladas, G.1    Pakula, L.2    Wang, Z.3
  • 12
    • 0034344333 scopus 로고    scopus 로고
    • Comparison and oscillation results for difference equations with continuous variable
    • Shen J.H. Comparison and oscillation results for difference equations with continuous variable. Indian J. Pure Appl. Math. 31 (2000) 1633-1642
    • (2000) Indian J. Pure Appl. Math. , vol.31 , pp. 1633-1642
    • Shen, J.H.1
  • 13
    • 0000318037 scopus 로고    scopus 로고
    • Oscillation for system of delay difference equations
    • Yan J., and Zhang F. Oscillation for system of delay difference equations. J. Math. Anal. Appl. 230 (1999) 223-231
    • (1999) J. Math. Anal. Appl. , vol.230 , pp. 223-231
    • Yan, J.1    Zhang, F.2
  • 15
    • 0000914669 scopus 로고
    • On delay differential equations with impulses
    • Gopalsamy K., and Zhang S.G. On delay differential equations with impulses. J. Math. Anal. Appl. 139 (1989) 110-122
    • (1989) J. Math. Anal. Appl. , vol.139 , pp. 110-122
    • Gopalsamy, K.1    Zhang, S.G.2
  • 16
    • 0036727735 scopus 로고    scopus 로고
    • Oscillation theorems of second-order nonlinear neutral delay difference equations with impulses
    • Peng M.S. Oscillation theorems of second-order nonlinear neutral delay difference equations with impulses. Comput. Math. Appl. 44 (2002) 741-748
    • (2002) Comput. Math. Appl. , vol.44 , pp. 741-748
    • Peng, M.S.1
  • 17
    • 33749488406 scopus 로고    scopus 로고
    • Oscillation of solutions of impulsive neutral difference equations with continuous variable
    • Wei G.P., and Shen J.H. Oscillation of solutions of impulsive neutral difference equations with continuous variable. Int. J. Math. Math. Sci. (2006) 1-7
    • (2006) Int. J. Math. Math. Sci. , pp. 1-7
    • Wei, G.P.1    Shen, J.H.2
  • 18
    • 4344620867 scopus 로고    scopus 로고
    • On a linear delay difference equation with impulses
    • Zhang Q.Q. On a linear delay difference equation with impulses. Ann. Differential Equations 18 (2002) 197-204
    • (2002) Ann. Differential Equations , vol.18 , pp. 197-204
    • Zhang, Q.Q.1
  • 19
    • 4344614043 scopus 로고    scopus 로고
    • Monotone iterative technique for first order impulsive difference equations with periodic boundary conditions
    • He Z.M., and Zhang X.M. Monotone iterative technique for first order impulsive difference equations with periodic boundary conditions. Appl. Math. Comput. 156 (2004) 605-620
    • (2004) Appl. Math. Comput. , vol.156 , pp. 605-620
    • He, Z.M.1    Zhang, X.M.2
  • 20
    • 84902038555 scopus 로고    scopus 로고
    • Stability of nonlinear difference equations with pulse actions: A comparison method
    • Abdullin R.Z. Stability of nonlinear difference equations with pulse actions: A comparison method. Automat. Remote Control, Part 1 61 (2000) 1796-1807
    • (2000) Automat. Remote Control, Part 1 , vol.61 , pp. 1796-1807
    • Abdullin, R.Z.1
  • 21
    • 33749512595 scopus 로고    scopus 로고
    • Global exponential stability of impulsive delay difference equation
    • Zhu W., Xu D.Y., and Yang Z.C. Global exponential stability of impulsive delay difference equation. Appl. Math. Comput. 181 (2006) 65-72
    • (2006) Appl. Math. Comput. , vol.181 , pp. 65-72
    • Zhu, W.1    Xu, D.Y.2    Yang, Z.C.3
  • 22
    • 0035426548 scopus 로고    scopus 로고
    • Asymptotic behavior of nonlinear difference equations with delays
    • Xu D.Y. Asymptotic behavior of nonlinear difference equations with delays. Comput. Math. Appl. 42 (2001) 393-398
    • (2001) Comput. Math. Appl. , vol.42 , pp. 393-398
    • Xu, D.Y.1
  • 23
    • 0038070253 scopus 로고    scopus 로고
    • Invariant and attracting sets of Volterra difference equations with delays
    • Xu D.Y. Invariant and attracting sets of Volterra difference equations with delays. Comput. Math. Appl. 45 (2003) 1311-1317
    • (2003) Comput. Math. Appl. , vol.45 , pp. 1311-1317
    • Xu, D.Y.1
  • 24
    • 0000558506 scopus 로고
    • Positively invariant closed sets for systems of delay differential equations
    • Seifert G. Positively invariant closed sets for systems of delay differential equations. J. Differential Equations 22 (1976) 292-304
    • (1976) J. Differential Equations , vol.22 , pp. 292-304
    • Seifert, G.1
  • 25
    • 33846588513 scopus 로고    scopus 로고
    • Attracting and invariant sets for a class of impulsive functional differential equations
    • Xu D.Y., and Yang Z.C. Attracting and invariant sets for a class of impulsive functional differential equations. J. Math. Anal. Appl. 329 (2007) 1036-1044
    • (2007) J. Math. Anal. Appl. , vol.329 , pp. 1036-1044
    • Xu, D.Y.1    Yang, Z.C.2
  • 26
    • 4444320169 scopus 로고    scopus 로고
    • A decomposition approach to analysis of competitive-cooperative neural networks with delay
    • Chu T.G., Zhang Z.D., and Wang Z.L. A decomposition approach to analysis of competitive-cooperative neural networks with delay. Phys. Lett. A 312 (2003) 339-347
    • (2003) Phys. Lett. A , vol.312 , pp. 339-347
    • Chu, T.G.1    Zhang, Z.D.2    Wang, Z.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.