메뉴 건너뛰기




Volumn 10, Issue 4, 2011, Pages 710-716

Survey of data-mining techniques used in fraud detection and prevention

Author keywords

Data mining; Fraud prevention; Information security; Intrusion detection; Network security

Indexed keywords

COMPETITIVE ADVANTAGE; DATA MINING PROCESS; DATA MINING TECHNIQUES; DATA PATTERNS; FRAUD DETECTION; FRAUD PREVENTION; INFORMATION SECURITY; LARGE DATABASE; LATEST DEVELOPMENT; LITTLE RESEARCH; MANAGEMENT FRAUDS; MINING TECHNIQUES;

EID: 79952255112     PISSN: 18125638     EISSN: 18125646     Source Type: Journal    
DOI: 10.3923/itj.2011.710.716     Document Type: Article
Times cited : (10)

References (33)
  • 2
    • 79952270592 scopus 로고    scopus 로고
    • Securing computerized models and data against integrity attacks
    • Bapna, S. and S. Patel, 2010. Securing computerized models and data against integrity attacks. Int. J. Electronic Finance, 4: 343-354.
    • (2010) Int. J. Electronic Finance , vol.4 , pp. 343-354
    • Bapna, S.1    Patel, S.2
  • 3
    • 77949360833 scopus 로고    scopus 로고
    • Fraud detection in telecommunications: History and lessons learned
    • Becker, R.A., C. Volinsky and A.R. Wilks, 2010. Fraud detection in telecommunications: History and lessons learned. Technometrics, 52: 20-33.
    • (2010) Technometrics , vol.52 , pp. 20-33
    • Becker, R.A.1    Volinsky, C.2    Wilks, A.R.3
  • 4
    • 60349101266 scopus 로고    scopus 로고
    • A fraud management system architecture for next-generation networks
    • Bella, M.A.B., J.H.P. Eloff andM.S. Olivier, 2009. A fraud management system architecture for next-generation networks. Forensic Sci. Int., 185: 51-58.
    • (2009) Forensic Sci. Int. , vol.185 , pp. 51-58
    • Bella, M.A.B.1    Eloff, J.H.P.2    Olivier, M.S.3
  • 6
    • 79952258650 scopus 로고    scopus 로고
    • Prevention and detection of financial statement fraud: A data mining approach
    • Gill, N. S. and R. Gupta, 2009. Prevention and detection of financial statement fraud: A data mining approach. IUP J. Syst. Manage., 7: 55-68.
    • (2009) IUP J. Syst. Manage. , vol.7 , pp. 55-68
    • Gill, N.S.1    Gupta, R.2
  • 7
    • 79952254814 scopus 로고    scopus 로고
    • Internet-based secure monitoring and control for utility companies and process plants
    • Graham, J. and S. Patel, 2006. Internet-based secure monitoring and control for utility companies and process plants. DIAS Technol. Rev. Int. J. Bus. IT, 3: 28-33.
    • (2006) DIAS Technol. Rev. Int. J. Bus. IT , vol.3 , pp. 28-33
    • Graham, J.1    Patel, S.2
  • 8
    • 58149489150 scopus 로고    scopus 로고
    • Learning from skewed class multi-relation databases
    • Guo, H. andH.L. Viktor, 2008. Learning from skewed class multi-relation databases. Fundamenta Informaticae, 89: 69-94.
    • (2008) Fundamenta Informaticae , vol.89 , pp. 69-94
    • Guo, H.1    Viktor, H.L.2
  • 9
    • 1642601851 scopus 로고    scopus 로고
    • Data mining: A competitive weapon for banking and retail industries
    • Hormozi, A.M. and S. Giles, 2004. Data mining: A competitive weapon for banking and retail industries. Inform. Syst. Manage., 21: 62-71. (Pubitemid 38408310)
    • (2004) Information Systems Management , vol.21 , Issue.2 , pp. 62-71
    • Hormozi, A.M.1    Giles, S.2
  • 10
    • 78651536584 scopus 로고    scopus 로고
    • Securing business information systems from cyber-attacks
    • Hua, J., S. Patel and J. Zaveri, 2009. Securing business information systems from cyber-attacks. J. Digital Bus., 3: 35-53.
    • (2009) J. Digital Bus. , vol.3 , pp. 35-53
    • Hua, J.1    Patel, S.2    Zaveri, J.3
  • 11
    • 56049089379 scopus 로고    scopus 로고
    • An investigation of Zipf s Law for fraud detection (DSS#06-10-1826R(2))
    • Huang, S.M., D.C. Yen, L.W. Yang and J.S. Hua, 2008. An investigation of Zipf s Law for fraud detection (DSS#06-10-1826R(2)). Decision Support Syst., 46: 70-83.
    • (2008) Decision Support Syst. , vol.46 , pp. 70-83
    • Huang, S.M.1    Yen, D.C.2    Yang, L.W.3    Hua, J.S.4
  • 12
    • 84938277235 scopus 로고    scopus 로고
    • Audit committee characteristics and corporate fraud
    • Huang, H.W. and S. Thiruvadi, 2010. Audit committee characteristics and corporate fraud. Int. J. Public Information Syst, 6: 71-82.
    • (2010) Int. J. Public Information Syst , vol.6 , pp. 71-82
    • Huang, H.W.1    Thiruvadi, S.2
  • 13
    • 79952259456 scopus 로고    scopus 로고
    • The performance of expectation maximization (EM) algorithm in gaussian mixed models (GMM)
    • Izhan, M., M. Yusoff, M.R. Abu-Bakar and A.H.S. Mohd Nor, 2009. The performance of Expectation Maximization (EM) algorithm in Gaussian Mixed Models (GMM). Perlamka J. Sci. Technol., 17: 231-243.
    • (2009) Perlamka J. Sci. Technol. , vol.17 , pp. 231-243
    • Izhan, M.1    Yusoff, M.2    Abu-Bakar, M.R.3    Mohd Nor, A.H.S.4
  • 14
    • 33751432287 scopus 로고    scopus 로고
    • Data Mining techniques for the detection of fraudulent financial statements
    • DOI 10.1016/j.eswa.2006.02.016, PII S0957417406000765
    • Kirkos, E., C. Spathis and Y. Manolopoulos, 2007. Data mining techniques for the detection of fraudulent financial statements. Expert Syst. Appl., 32: 995-1003. (Pubitemid 44821791)
    • (2007) Expert Systems with Applications , vol.32 , Issue.4 , pp. 995-1003
    • Kirkos, E.1    Spathis, C.2    Manolopoulos, Y.3
  • 15
    • 33845768389 scopus 로고    scopus 로고
    • Learning to detect and classify malicious executables in the wild
    • Kolter, J.Z. and M.A. Maloof, 2006. Learning to detect and classify malicious executables in the wild. J. Machine Learning Res., 7: 2712-2744.
    • (2006) J. Machine Learning Res. , vol.7 , pp. 2712-2744
    • Kolter, J.Z.1    Maloof, M.A.2
  • 17
    • 56949107719 scopus 로고    scopus 로고
    • Multiple criteria mathematical programming for multi-class classification and application in network intrusion detection
    • Kou, G., Y. Peng, Z. Chen and Y. Shi, 2009. Multiple criteria mathematical programming for multi-class classification and application in network intrusion detection. Inform. Sci., 179: 371-381.
    • (2009) Inform. Sci. , vol.179 , pp. 371-381
    • Kou, G.1    Peng, Y.2    Chen, Z.3    Shi, Y.4
  • 18
    • 69249213464 scopus 로고    scopus 로고
    • Network forensics based on fuzzy logic and expert system
    • Liao, N., S. Tian and T. Wang, 2009. Network forensics based on fuzzy logic and expert system. Comput. Commun, 32: 1881-1892.
    • (2009) Comput. Commun , vol.32 , pp. 1881-1892
    • Liao, N.1    Tian, S.2    Wang, T.3
  • 19
    • 57849160249 scopus 로고    scopus 로고
    • Fraudulent financial reporting detection and business failure prediction models: A comparison
    • Liou, F.M., 2006. Fraudulent financial reporting detection and business failure prediction models: A comparison. Manage. Auditing J., 23: 650-662.
    • (2006) Manage. Auditing J. , vol.23 , pp. 650-662
    • Liou, F.M.1
  • 20
    • 10844230994 scopus 로고    scopus 로고
    • Intrusion detection using an ensemble of intelligent paradigms
    • DOI 10.1016/j.jnca.2004.01.003, PII S1084804504000049, Computational Intelligence on the Internet
    • Mukkamala, S., A.H. Sung and A. Abraham, 2005. Intrusion detection using an ensemble of intelligent paradigms. J. Network Comput. Appl., 28: 167-182. (Pubitemid 40003209)
    • (2005) Journal of Network and Computer Applications , vol.28 , Issue.2 , pp. 167-182
    • Mukkamala, S.1    Sung, A.H.2    Abraham, A.3
  • 22
    • 79960347129 scopus 로고    scopus 로고
    • Credit card fraud detection using artificial neural networks with a rule-based component
    • Nonyelum, O.F. andl.H. Chibueze, 2009. Credit card fraud detection using artificial neural networks with a rule-based component. ICFAI Univ. J. Sci. Technol., 5: 40-47.
    • (2009) ICFAI Univ. J. Sci. Technol. , vol.5 , pp. 40-47
    • Nonyelum, O.F.1    Chibueze, H.2
  • 23
    • 79952253758 scopus 로고    scopus 로고
    • Designing intrusion detection system for web document using neural network
    • Om, H. and T.K. Sarkar, 2010. Designing intrusion detection system for web document using neural network. Commun. Network, 2: 54-61.
    • (2010) Commun. Network , vol.2 , pp. 54-61
    • Om, H.1    Sarkar, T.K.2
  • 24
    • 63649143946 scopus 로고    scopus 로고
    • Encoding and decoding the knowledge of association rules over SVM classification trees
    • Pang, S. and N. Kasabov, 2009. Encoding and decoding the knowledge of association rules over SVM classification trees. Knowledge Inform. Syst, 19: 79-105.
    • (2009) Knowledge Inform. Syst , vol.19 , pp. 79-105
    • Pang, S.1    Kasabov, N.2
  • 25
    • 79952265421 scopus 로고    scopus 로고
    • Security considerations for RFID in supply chain management
    • Patel, S. and A. Emdad, 2008. Security considerations for RFID in supply chain management. Academy Taiwan Bus. Manage. Rev., 4: 12-19.
    • (2008) Academy Taiwan Bus. Manage. Rev. , vol.4 , pp. 12-19
    • Patel, S.1    Emdad, A.2
  • 26
    • 67651162241 scopus 로고    scopus 로고
    • Improving the cyber security of SCADA communication networks
    • Patel, S., G. Bhatt and J. Graham, 2009. Improving the cyber security of SCADA communication networks. Commun. ACM, 52: 139-142.
    • (2009) Commun. ACM , vol.52 , pp. 139-142
    • Patel, S.1    Bhatt, G.2    Graham, J.3
  • 27
    • 78651541357 scopus 로고    scopus 로고
    • A risk assessment model for cyber attacks on information systems
    • Patel, S. and J. Zaveri, 2010. A risk assessment model for cyber attacks on information systems. J. Comput, 5: 352-359.
    • (2010) J. Comput , vol.5 , pp. 352-359
    • Patel, S.1    Zaveri, J.2
  • 28
    • 54949112031 scopus 로고    scopus 로고
    • Quantitatively assessing the vulnerability of critical information systems: A new method for evaluating security enhancements
    • Patel, S., J. Graham and P. Ralston, 2008. Quantitatively assessing the vulnerability of critical information systems: A new method for evaluating security enhancements. Int. J. Inform. Manage., 28: 483-491.
    • (2008) Int. J. Inform. Manage. , vol.28 , pp. 483-491
    • Patel, S.1    Graham, J.2    Ralston, P.3
  • 29
    • 68149098571 scopus 로고    scopus 로고
    • Using Fraud detection using an adaptive neuro-fuzzy inference system in mobile telecommunication networks
    • Sanver, M. and A. Karahoca, 2009. Using Fraud detection using an adaptive neuro-fuzzy inference system in mobile telecommunication networks. J. Multiple-Valued logic SoftComput, 155: 155-179.
    • (2009) J. Multiple-Valued logic SoftComput , vol.155 , pp. 155-179
    • Sanver, M.1    Karahoca, A.2
  • 30
    • 34447336373 scopus 로고    scopus 로고
    • Employing Latent Dirichlet Allocation for fraud detection in telecommunications
    • DOI 10.1016/j.patrec.2007.04.015, PII S016786550700147X
    • Xing, D. andM. Girolami, 2007. Employing latent dirichlet allocation for fraud detection in telecommunications. Pattern Recognition Lett., 28: 1727-1734. (Pubitemid 47058626)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.13 , pp. 1727-1734
    • Xing, D.1    Girolami, M.2
  • 32
    • 3543125360 scopus 로고    scopus 로고
    • On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms
    • DOI 10.1023/B:DAMI.0000023676.72185.7c
    • YamanishiK., J. Takeuchi, G. Williams andP. Milne, 2004. On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Mining Knowledge Discovery, 8: 275-300. (Pubitemid 39019964)
    • (2004) Data Mining and Knowledge Discovery , vol.8 , Issue.3 , pp. 275-300
    • Yamanishi, K.1    Takeuchi, J.-I.2    Williams, G.3    Milne, P.4
  • 33
    • 33645552151 scopus 로고    scopus 로고
    • Finding centric local outliers in categorical/numerical spaces
    • DOI 10.1007/s10115-005-0197-6
    • Yu, J.X., W. Qian, H. Lu and A. Zhou, 2006. Finding centric local outliers in categorical/numerical spaces. Knowledge Inform. Syst, 9: 309-338. (Pubitemid 43507136)
    • (2006) Knowledge and Information Systems , vol.9 , Issue.3 , pp. 309-338
    • Yu, J.X.1    Qian, W.2    Lu, H.3    Zhou, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.