메뉴 건너뛰기




Volumn 28, Issue 13, 2007, Pages 1727-1734

Employing Latent Dirichlet Allocation for fraud detection in telecommunications

Author keywords

Data mining; Fraud detection; Latent Dirichlet Allocation; Telecommunications; User modelling

Indexed keywords

CALL TRAFFIC; FRAUD DETECTION; LATENT DIRICHLET ALLOCATION; USER MODELING; USER PROFILE SIGNATURES;

EID: 34447336373     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2007.04.015     Document Type: Article
Times cited : (70)

References (31)
  • 1
    • 0030652931 scopus 로고    scopus 로고
    • Aleskerov, E., Freisleben, B., Rao, B., 1997. Cardwatch: A neural network based database mining system for credit card fraud detection. In: Computational Intelligence for Financial Engineering, Proc. IEEE/IAFE, pp. 220-226.
  • 4
    • 34447333968 scopus 로고    scopus 로고
    • Bolton, R.J., Hand, D.J., 2001a. Unsupervised profiling methods for fraud detection. In: Conf. on Credit Scoring and Credit Control 7, Edinburgh, UK, 5-7 September.
  • 5
    • 34447339706 scopus 로고    scopus 로고
    • Bolton, R.J., Hand, D.J., 2001b. Peer group analysis, Technical Report, Department of Mathematics, Imperial College, London.
  • 6
    • 0042421807 scopus 로고    scopus 로고
    • Statistical fraud detection: A review
    • Bolton R.J., and Hand D.J. Statistical fraud detection: A review. Statist. Sci. 17 3 (2002) 235-249
    • (2002) Statist. Sci. , vol.17 , Issue.3 , pp. 235-249
    • Bolton, R.J.1    Hand, D.J.2
  • 7
    • 34447336192 scopus 로고    scopus 로고
    • Burge, P., Shawe-Taylor, J., 1997. Detecting cellular fraud using adaptive prototypes. In: AAAI-97 Workshop on AI - Approaches to Fraud Detection and Risk Management, Rhode Island.
  • 8
    • 0010852727 scopus 로고    scopus 로고
    • An unsupervised neural network approach to profiling the behavior of mobile phone users for use in fraud detection
    • Burge P., and Shawe-Taylor J. An unsupervised neural network approach to profiling the behavior of mobile phone users for use in fraud detection. J. Parallel Distributed Comput. 61 (2001) 915-925
    • (2001) J. Parallel Distributed Comput. , vol.61 , pp. 915-925
    • Burge, P.1    Shawe-Taylor, J.2
  • 9
    • 34447312541 scopus 로고    scopus 로고
    • Cahill, M., Lambert, D., Pinheiro, J., Sun, D., 2002. Detecting fraud in the real world. Handbook of Massive Data Sets, pp. 911-929.
  • 10
    • 0041959999 scopus 로고    scopus 로고
    • Money laundering detection with a neural network
    • Lisboa P.J.G., Vellido A., and Edisbury B. (Eds), World Scientific, Singapore
    • Chartier B., and Spillane T. Money laundering detection with a neural network. In: Lisboa P.J.G., Vellido A., and Edisbury B. (Eds). Business Applications of Neural Networks (2000), World Scientific, Singapore 159-172
    • (2000) Business Applications of Neural Networks , pp. 159-172
    • Chartier, B.1    Spillane, T.2
  • 11
    • 0037332891 scopus 로고    scopus 로고
    • Data mining for decision support on customer insolvency in telecommunications business
    • Daskalaki S., Kopanas I., Goudara M., and Avouris N. Data mining for decision support on customer insolvency in telecommunications business. Eur. J. Oper. Res. 145 (2003) 239-255
    • (2003) Eur. J. Oper. Res. , vol.145 , pp. 239-255
    • Daskalaki, S.1    Kopanas, I.2    Goudara, M.3    Avouris, N.4
  • 12
    • 34447316776 scopus 로고    scopus 로고
    • Case study: Adaptive fraud detection
    • Klösgen W., and Zytkow J. (Eds), Oxford University Press, UK
    • Fawcett T. Case study: Adaptive fraud detection. In: Klösgen W., and Zytkow J. (Eds). Handbook of Data Mining and Knowledge Discovery (section H1.2.1) (2002), Oxford University Press, UK
    • (2002) Handbook of Data Mining and Knowledge Discovery (section H1.2.1)
    • Fawcett, T.1
  • 13
    • 34447325962 scopus 로고    scopus 로고
    • Fawcett, T., 2003. ROC graphs: Notes and practical considerations for data mining researchers. HP Labs. Technical Report HPL-2003-4.
  • 15
    • 22044450174 scopus 로고    scopus 로고
    • Sequential activity profiling: Latent Dirichlet Allocation of Markov chains
    • Girolami M., and Kaban A. Sequential activity profiling: Latent Dirichlet Allocation of Markov chains. Data Min. Knowledge Discovery 10 (2005) 175-196
    • (2005) Data Min. Knowledge Discovery , vol.10 , pp. 175-196
    • Girolami, M.1    Kaban, A.2
  • 16
    • 34447310903 scopus 로고    scopus 로고
    • Hand, D.J., Blunt, G., 2000. Prospecting for gems in credit card data. In: Proc. Workshop on Statistical Modelling for Data Mining, University of Pavia.
  • 18
    • 0013325845 scopus 로고    scopus 로고
    • Detecting payment card fraud with neural networks
    • Lisboa P.J.G., Vellido A., and Edisbury B. (Eds), World Scientific, Singapore
    • Hassibi K. Detecting payment card fraud with neural networks. In: Lisboa P.J.G., Vellido A., and Edisbury B. (Eds). Business Applications of Neural Networks (2000), World Scientific, Singapore
    • (2000) Business Applications of Neural Networks
    • Hassibi, K.1
  • 19
    • 34447326498 scopus 로고    scopus 로고
    • Hollmen, J., Tresp, V., 2000. A hidden Markov model for metric and event-based data. In: Proc. EUSIPCO 2000, pp. 737-740.
  • 20
    • 2942674608 scopus 로고    scopus 로고
    • Kou, Y., Lu, C.T., Sirwongwattana, S., Huang, Y.P., 2004. Survey of fraud detection techniques. In: Proc. IEEE Internat. Conf. on Networking, Sensing and Control Taipei, Taiwan, pp. 749-754.
  • 22
    • 85009979512 scopus 로고    scopus 로고
    • Phenomenal data mining
    • Mccarthy J. Phenomenal data mining. Comm. ACM 43 (2000) 75-79
    • (2000) Comm. ACM , vol.43 , pp. 75-79
    • Mccarthy, J.1
  • 23
    • 0034187076 scopus 로고    scopus 로고
    • Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry
    • Mozer M.C., Wolniewicz R., Grimes D.B., Johnson E., and Kaushansky H. Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry. IEEE Trans. Neural Networks 11 3 (2000) 690-696
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 690-696
    • Mozer, M.C.1    Wolniewicz, R.2    Grimes, D.B.3    Johnson, E.4    Kaushansky, H.5
  • 24
    • 34447321914 scopus 로고    scopus 로고
    • NORTEL, 2000. Nortel networks fraud solutions. Fraud Primer, Issue 2.0. Nortel Networks Corporation.
  • 25
    • 18444368153 scopus 로고    scopus 로고
    • Lessons from the deregulation transition in Chile's local telephony market
    • Paredes R.D. Lessons from the deregulation transition in Chile's local telephony market. Telecomm. Policy 29 (2005) 333-350
    • (2005) Telecomm. Policy , vol.29 , pp. 333-350
    • Paredes, R.D.1
  • 26
    • 23844462861 scopus 로고    scopus 로고
    • Measuring bias and uncertainty in ideal point estimates via the parametric bootstrap
    • Poole K.T., and Lewis J. Measuring bias and uncertainty in ideal point estimates via the parametric bootstrap. Political Anal. 12 2 (2003) 105-127
    • (2003) Political Anal. , vol.12 , Issue.2 , pp. 105-127
    • Poole, K.T.1    Lewis, J.2
  • 27
    • 34447304143 scopus 로고    scopus 로고
    • Rossset, S., Murad, U., Neumann, E., Idan, Y., Pinkas, G., 1999. Discovery of fraud rules for telecommunications-challenges and solutions. In: Proc. 5th ACM SIGKDD Internat. Conf. on Knowledge Discovery and Data Mining, pp. 409-413.
  • 28
    • 0034592921 scopus 로고    scopus 로고
    • Senator, T.E., 2000. Ongoing management and application of discovered knowledge in a large regulatory organization: A case study of the use and impact of NASD regulation's advanced detection system (ADS). In: Proc. 6th ACM SIGKDD Internat. Conf. on Knowledge Discovery and Data Mining, NY, pp. 44-53.
  • 29
    • 0036454177 scopus 로고    scopus 로고
    • Syeda M., Zhang Y.Q., Pan Y., 2002. Parallel granular neural networks for fast credit card fraud detection. In: Proc. 2002 Internat. Conf., vol. 1, pp. 572-577.
  • 30
    • 84892142402 scopus 로고    scopus 로고
    • Taniguchi, M., Haft, M., Hollmn, J. Tresp, V., 1998. Fraud detection in communications networks using neural and probabilistic methods. In: Proc. 1998 IEEE Internat. Conf. on Acoustics, Speech and Signal Processing (ICASSP'98), vol. 2, pp. 1241-1244.
  • 31
    • 0012282403 scopus 로고    scopus 로고
    • Computer intrusion: Detecting masquerades
    • Mathematical Reviews: MR1855740
    • Theus M., and Vardi Y. Computer intrusion: Detecting masquerades. Statist. Sci. 16 (2001) 58-74 Mathematical Reviews: MR1855740
    • (2001) Statist. Sci. , vol.16 , pp. 58-74
    • Theus, M.1    Vardi, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.