메뉴 건너뛰기




Volumn 6, Issue 2, 2011, Pages

Heart rate variability dynamics for the prognosis of cardiovascular risk

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL INTELLIGENCE; BREATHING RATE; CARDIOVASCULAR RISK; CLASSIFICATION ALGORITHM; CLINICAL ARTICLE; CONTROLLED STUDY; HEART RATE VARIABILITY; HUMAN; INTERMETHOD COMPARISON; KOLMOGOROV SMIRNOV TEST; NONLINEAR SYSTEM; PATIENT CODING; PERCEPTRON; PROGNOSIS; RADIAL BASED FUNCTION; SUPPORT VECTOR MACHINE; ALGORITHM; BREATHING; CARDIOVASCULAR DISEASE; COMPUTER PROGRAM; ELECTROCARDIOGRAPHY; FEMALE; HEART RATE; INDIVIDUALITY; MALE; METHODOLOGY; PATHOPHYSIOLOGY; PHYSIOLOGY; RISK FACTOR; SENSITIVITY AND SPECIFICITY; SIGNAL PROCESSING; STANDARD; VALIDATION STUDY;

EID: 79952232740     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0017060     Document Type: Article
Times cited : (43)

References (68)
  • 1
    • 50049126632 scopus 로고    scopus 로고
    • Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal
    • Mohammadzadeh Asl B, Kamaledin Setarehdan S, Mohebbi M, (2008) Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artificial Intelligence in Medicine 44: 51-64.
    • (2008) Artificial Intelligence in Medicine , vol.44 , pp. 51-64
    • Mohammadzadeh, A.B.1    Kamaledin, S.S.2    Mohebbi, M.3
  • 3
    • 0033104431 scopus 로고    scopus 로고
    • Radial basis function neural networks for the characterization of heart rate variability dynamics
    • Bezerianos A, Papadimitriou S, Alexopoulos D, (1999) Radial basis function neural networks for the characterization of heart rate variability dynamics. Artificial Intelligence in Medicine 15: 215-234.
    • (1999) Artificial Intelligence in Medicine , vol.15 , pp. 215-234
    • Bezerianos, A.1    Papadimitriou, S.2    Alexopoulos, D.3
  • 4
    • 33845649257 scopus 로고    scopus 로고
    • Wavelet transform: A better approach for the evalation of instantaneous changes in heart rate variability
    • Belova NY, Mihaylov SV, Piryova BG, (2007) Wavelet transform: A better approach for the evalation of instantaneous changes in heart rate variability. Autonomic Neuroscience: Basic and Clinical 131: 107-122.
    • (2007) Autonomic Neuroscience: Basic and Clinical , vol.131 , pp. 107-122
    • Belova, N.Y.1    Mihaylov, S.V.2    Piryova, B.G.3
  • 5
    • 75749156380 scopus 로고    scopus 로고
    • Heart rate variability: Measurement methods and practical implications
    • In: Maud PJ, Foster C, editors
    • Lopes P, White J, (2006) Heart rate variability: Measurement methods and practical implications. In: Maud PJ, Foster C, editors. Physiological Assessment of Human Fitness pp. 39-61.
    • (2006) Physiological Assessment of Human Fitness , pp. 39-61
    • Lopes, P.1    White, J.2
  • 6
    • 79952204570 scopus 로고    scopus 로고
    • Estudio de la Variabilidad del ritmo cardíaco mediante técnicas estadísticas, espectrales y no-lineales
    • García-González MA, (1998) Estudio de la Variabilidad del ritmo cardíaco mediante técnicas estadísticas, espectrales y no-lineales. PhD Thesis, Universitat Politècnica De Catalunya.
    • (1998) PhD Thesis, Universitat Politècnica De Catalunya
    • García-González, M.A.1
  • 8
    • 0037209480 scopus 로고    scopus 로고
    • Classification of heart rate data using artificial neural network and fuzzy equivalence relation
    • Acharyaa UR, Bhatb PS, Iyengarc SS, Raod A, Dua S, (2003) Classification of heart rate data using artificial neural network and fuzzy equivalence relation. Pattern Recognition 36: 61-68.
    • (2003) Pattern Recognition , vol.36 , pp. 61-68
    • Acharyaa, U.R.1    Bhatb, P.S.2    Iyengarc, S.S.3    Raod, A.4    Dua, S.5
  • 9
    • 45049086129 scopus 로고    scopus 로고
    • Time domain parameters can be estimated with less statistical error than frequency domain parameters in the analysis of heart rate variability
    • Kuss O, Schumann B, Kluttig A, Greiser KH, Haerting J, (2008) Time domain parameters can be estimated with less statistical error than frequency domain parameters in the analysis of heart rate variability. Journal of Electrocardiology 41: 287-291.
    • (2008) Journal of Electrocardiology , vol.41 , pp. 287-291
    • Kuss, O.1    Schumann, B.2    Kluttig, A.3    Greiser, K.H.4    Haerting, J.5
  • 11
    • 50649121265 scopus 로고    scopus 로고
    • Efficient solution for frequency band decomposition problem using wavelet packet in HRV
    • Bilgin S, Çolak OH, Koklukaya E, Ari N, (2008) Efficient solution for frequency band decomposition problem using wavelet packet in HRV. Digital Signal Processing 18: 892-899.
    • (2008) Digital Signal Processing , vol.18 , pp. 892-899
    • Bilgin, S.1    Çolak, O.H.2    Koklukaya, E.3    Ari, N.4
  • 12
    • 0029928495 scopus 로고    scopus 로고
    • Heart Rate Variability Standards of Measurement, Physiological Interpretation, and Clinical Use
    • Task force of the European society of cardiology and the North American society of pacing and electrophysiology
    • Task force of the European society of cardiology and the North American society of pacing and electrophysiology (1996) Heart Rate Variability Standards of Measurement, Physiological Interpretation, and Clinical Use. Circulation 93: 1043-1065.
    • (1996) Circulation , vol.93 , pp. 1043-1065
  • 13
    • 0001531065 scopus 로고    scopus 로고
    • Reproducibility of Short -and Long-Term Poincaré Plot Parameters Compared with Frequency-Domain HRV Indexes in Congestive Heart Failure
    • D'Addio G, Acanfora D, Pinna GD, Maestri R, Furgi G, et al. (1998) Reproducibility of Short-and Long-Term Poincaré Plot Parameters Compared with Frequency-Domain HRV Indexes in Congestive Heart Failure. Computers in Cardiology 25: 381-384.
    • (1998) Computers in Cardiology , vol.25 , pp. 381-384
    • D'Addio, G.1    Acanfora, D.2    Pinna, G.D.3    Maestri, R.4    Furgi, G.5
  • 14
    • 0033282479 scopus 로고    scopus 로고
    • Correlation Between Power-law Behavior and Poincaré Plots of Heart Rate Variability in Congestive Heart Failure Patients
    • D'Addio G, Pinna GD, Maestri R, Acanfora D, Picone C, et al. (1999) Correlation Between Power-law Behavior and Poincaré Plots of Heart Rate Variability in Congestive Heart Failure Patients. Computers in Caridiology 26: 611-614.
    • (1999) Computers in Caridiology , vol.26 , pp. 611-614
    • D'Addio, G.1    Pinna, G.D.2    Maestri, R.3    Acanfora, D.4    Picone, C.5
  • 16
  • 17
    • 0034769177 scopus 로고    scopus 로고
    • Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability?
    • Brennan M, Planiswami M, Kamen P, (2001) Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability?. IEEE Trans Biomed Eng 48: 1342-1347.
    • (2001) IEEE Trans Biomed Eng , vol.48 , pp. 1342-1347
    • Brennan, M.1    Planiswami, M.2    Kamen, P.3
  • 18
    • 79952227838 scopus 로고    scopus 로고
    • La variabilidad de la frecuencia cardíaca como factor pronóstico de mortalidad del infarto del miocardio: Revisión sistemática de estudios observacionales
    • Rueda OL, López EJ, Vargas CA, Delgado MB, Murillo CA, (2007) La variabilidad de la frecuencia cardíaca como factor pronóstico de mortalidad del infarto del miocardio: Revisión sistemática de estudios observacionales. Médica Sanitas 22.
    • (2007) Médica Sanitas , vol.22
    • Rueda, O.L.1    López, E.J.2    Vargas, C.A.3    Delgado, M.B.4    Murillo, C.A.5
  • 19
    • 0024852729 scopus 로고
    • Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques
    • Malik M, Farrell T, Cripps TR, Camm AJ, (1989) Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques. Eur Heart J 10: 1060-1074.
    • (1989) Eur Heart J , vol.10 , pp. 1060-1074
    • Malik, M.1    Farrell, T.2    Cripps, T.R.3    Camm, A.J.4
  • 20
    • 44349119093 scopus 로고    scopus 로고
    • Complexity and spectral análisis of the heart rate variability dynamics for distant prediction of paroxysmal atrial fibrillation with artificial intelligence methods
    • Chesnokov YV, (2008) Complexity and spectral análisis of the heart rate variability dynamics for distant prediction of paroxysmal atrial fibrillation with artificial intelligence methods. Artificial Intelligence in Medicine 43: 151-165.
    • (2008) Artificial Intelligence in Medicine , vol.43 , pp. 151-165
    • Chesnokov, Y.V.1
  • 21
    • 34547595913 scopus 로고    scopus 로고
    • Combining classical HRV indexes with wavelet entropy measures improves to performance in diagnosing congestive heart failure
    • Ísler Y, Kuntalp M, (2007) Combining classical HRV indexes with wavelet entropy measures improves to performance in diagnosing congestive heart failure. Computers in Biology and Medicine 37: 1502-1510.
    • (2007) Computers in Biology and Medicine , vol.37 , pp. 1502-1510
    • Ísler, Y.1    Kuntalp, M.2
  • 23
    • 0002646015 scopus 로고
    • Spectral Analysis of Some Spontaneous Rhythms in the Circulation. Leipzig
    • Germany, Biokybernetik, Karl Marx University
    • Penaz J, Roukenz J, Van Der Waal HJ, (1968) Spectral Analysis of Some Spontaneous Rhythms in the Circulation. Leipzig Germany Biokybernetik, Karl Marx University pp. 223-241.
    • (1968) , pp. 223-241
    • Penaz, J.1    Roukenz, J.2    Van Der Waal, H.J.3
  • 24
    • 0021912061 scopus 로고
    • Assessment of autonomic function in humans by heart rate spectral analysis
    • Pomeranz M, Macaulay R, Caudill M, Ma K, Kutz I, et al. (1985) Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol 248: H151-H153.
    • (1985) Am J Physiol , vol.248
    • Pomeranz, M.1    Macaulay, R.2    Caudill, M.3    Ma, K.4    Kutz, I.5
  • 25
    • 0019827638 scopus 로고
    • Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat to beat cardiovascular control
    • Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, et al. (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat to beat cardiovascular control. Science pp. 220-222.
    • (1981) Science , pp. 220-222
    • Akselrod, S.1    Gordon, D.2    Ubel, F.A.3    Shannon, D.C.4    Barger, A.C.5
  • 26
    • 0023152797 scopus 로고
    • Spectral analysis of fluctuations in heart rate: an objective evaluation of autonomic nervous control in chronic renal failure
    • Akselrod S, Lishner M, Oz O, Bernheim J, Ravid M, (1987) Spectral analysis of fluctuations in heart rate: an objective evaluation of autonomic nervous control in chronic renal failure. Nephron 45: 202-206.
    • (1987) Nephron , vol.45 , pp. 202-206
    • Akselrod, S.1    Lishner, M.2    Oz, O.3    Bernheim, J.4    Ravid, M.5
  • 28
    • 0036112612 scopus 로고    scopus 로고
    • A study on the optimum order of autoregressive models for heart rate variability
    • Broadman A, Schlindwein FS, Rocha AP, Leite A, (2002) A study on the optimum order of autoregressive models for heart rate variability. Physiol Meas 23: 324-336.
    • (2002) Physiol Meas , vol.23 , pp. 324-336
    • Broadman, A.1    Schlindwein, F.S.2    Rocha, A.P.3    Leite, A.4
  • 29
    • 84934177971 scopus 로고
    • Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympathovagal interaction in man and conscious dog
    • Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, et al. (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympathovagal interaction in man and conscious dog. Circ Res 58: 178-193.
    • (1986) Circ Res , vol.58 , pp. 178-193
    • Pagani, M.1    Lombardi, F.2    Guzzetti, S.3    Rimoldi, O.4    Furlan, R.5
  • 30
    • 57749178175 scopus 로고    scopus 로고
    • Spectral analysis of heart rate variability (HRV) may predict the future development of essential hypertension
    • Pal GK, Pal P, Nanda N, Amudharaj D, Karthik S, (2009) Spectral analysis of heart rate variability (HRV) may predict the future development of essential hypertension. Medical Hypotheses 72: 183-185.
    • (2009) Medical Hypotheses , vol.72 , pp. 183-185
    • Pal, G.K.1    Pal, P.2    Nanda, N.3    Amudharaj, D.4    Karthik, S.5
  • 31
    • 2342498286 scopus 로고    scopus 로고
    • Estimation and Power Spectral Analysis of Heart Instantaneous Frequency (HIF) - A Wavelet Approach
    • Ravichandran IT, Ramasuhha Reddy I, Avudainayagam A, (2003) Estimation and Power Spectral Analysis of Heart Instantaneous Frequency (HIF)- A Wavelet Approach. Bio-Signal Processing TENCON pp. 223-226.
    • (2003) Bio-Signal Processing TENCON , pp. 223-226
    • Ravichandran, I.T.1    Ramasuhha, R.I.2    Avudainayagam, A.3
  • 33
    • 0037346510 scopus 로고    scopus 로고
    • Poincaré plot indexes of heart rate variability capture dynamic adaptations after haemodialysis in chronic renal failure patients
    • Lerma C, Infante O, Perez-Grovas H, Jose MV, (2003) Poincaré plot indexes of heart rate variability capture dynamic adaptations after haemodialysis in chronic renal failure patients. Clin Physiol & Func Im 23: 72-80.
    • (2003) Clin Physiol & Func Im , vol.23 , pp. 72-80
    • Lerma, C.1    Infante, O.2    Perez-Grovas, H.3    Jose, M.V.4
  • 35
    • 33750163457 scopus 로고    scopus 로고
    • Effect of RR Segment Duration on Short-Term HRV Assessment Using Poincaré Plot
    • Singh D, Vinod K, (2005) Effect of RR Segment Duration on Short-Term HRV Assessment Using Poincaré Plot. Proceedings of ICISIP pp. 430-434.
    • (2005) Proceedings of ICISIP , pp. 430-434
    • Singh, D.1    Vinod, K.2
  • 36
    • 0036839050 scopus 로고    scopus 로고
    • Poincaré plot interpretation using a physiological model of HRV based on a network of oscillators
    • Brennan M, Palaniswami M, Kamen P, (2002) Poincaré plot interpretation using a physiological model of HRV based on a network of oscillators. Am J Physiol Heart Circ Physiol 283: 1873-1886.
    • (2002) Am J Physiol Heart Circ Physiol , vol.283 , pp. 1873-1886
    • Brennan, M.1    Palaniswami, M.2    Kamen, P.3
  • 37
    • 0029592058 scopus 로고
    • Numeric processing of Lorenz plots of R-R intervals from long-term ECGs. Comparison with time-domain measures of heart rate variability for risk stratification after myocardial infarction
    • Hnatkova K, Copie X, Staunton A, Malik M, (1995) Numeric processing of Lorenz plots of R-R intervals from long-term ECGs. Comparison with time-domain measures of heart rate variability for risk stratification after myocardial infarction. J Electrocardiol 28: 74-80.
    • (1995) J Electrocardiol , vol.28 , pp. 74-80
    • Hnatkova, K.1    Copie, X.2    Staunton, A.3    Malik, M.4
  • 38
    • 0008494528 scopus 로고
    • Determining Lyapunov exponents from a time series
    • Wolf A, Swift JB, Swinney HL, Vastano JA, (1985) Determining Lyapunov exponents from a time series. Physica 16D: 285-317.
    • (1985) Physica , vol.16 D , pp. 285-317
    • Wolf, A.1    Swift, J.B.2    Swinney, H.L.3    Vastano, J.A.4
  • 39
    • 0019999725 scopus 로고
    • 1/f fluctuation of heartbeat period
    • Kobayashi M, Musha T, (1982) 1/f fluctuation of heartbeat period. IEEE Trans Biomed Eng 29: 456-257.
    • (1982) IEEE Trans Biomed Eng , vol.29 , pp. 456-257
    • Kobayashi, M.1    Musha, T.2
  • 40
    • 0029870969 scopus 로고    scopus 로고
    • Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside,
    • Goldberger AL, (1996) Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside, Lancet 347: 1312-1314.
    • (1996) Lancet , vol.347 , pp. 1312-1314
    • Goldberger, A.L.1
  • 41
    • 0029589965 scopus 로고
    • Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease
    • Peng CK, Havlin S, Hausdorf JM, Mietus JE, Stanley HE, et al. (1995) Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease. J Electrocardiol 28: 59-65.
    • (1995) J Electrocardiol , vol.28 , pp. 59-65
    • Peng, C.K.1    Havlin, S.2    Hausdorf, J.M.3    Mietus, J.E.4    Stanley, H.E.5
  • 42
    • 0019629207 scopus 로고
    • Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate
    • Hirsh JA, Bishop B, (1981) Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol Heart Circ Physiol 241: H620-H629.
    • (1981) Am J Physiol Heart Circ Physiol , vol.241
    • Hirsh, J.A.1    Bishop, B.2
  • 43
    • 0030969307 scopus 로고    scopus 로고
    • Origin of Respiratory Sinus Arrhythmia in Conscious Humans
    • Piepoli M, Sleight P, Leuzzi S, Valle F, Spadacini G, et al. (1997) Origin of Respiratory Sinus Arrhythmia in Conscious Humans. Circulation 95: 1813-1821.
    • (1997) Circulation , vol.95 , pp. 1813-1821
    • Piepoli, M.1    Sleight, P.2    Leuzzi, S.3    Valle, F.4    Spadacini, G.5
  • 44
    • 0016712559 scopus 로고
    • Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control
    • Katona PG, Jih F, (1975) Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol 39: 801-805.
    • (1975) J Appl Physiol , vol.39 , pp. 801-805
    • Katona, P.G.1    Jih, F.2
  • 45
    • 60449094498 scopus 로고    scopus 로고
    • Heart disease and stroke statistics - 2009 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee
    • Lloyd-Jones D, Adams R, Carnethon M, de Simone G, Ferguson TB, et al. (2009) Heart disease and stroke statistics - 2009 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119: e21-e181.
    • (2009) Circulation , vol.119
    • Lloyd-Jones, D.1    Adams, R.2    Carnethon, M.3    de Simone, G.4    Ferguson, T.B.5
  • 46
    • 84896738563 scopus 로고    scopus 로고
    • Guías colombianas de cardiología. Síndrome coronario agudo con elevación del ST
    • Beltrán-Bohórquez JR, (2010) Guías colombianas de cardiología. Síndrome coronario agudo con elevación del ST. Revista Colombiana de Cardiología 17: 111-275.
    • (2010) Revista Colombiana De Cardiología , vol.17 , pp. 111-275
    • Beltrán-Bohórquez, J.R.1
  • 47
    • 0027027227 scopus 로고
    • Heart rate variability in smokers, sedentary and aerobically fit individuals
    • Gallagher D, Terenzi T, de Meersman R, (1992) Heart rate variability in smokers, sedentary and aerobically fit individuals. Clinical Autonomic Research 2: 383-387.
    • (1992) Clinical Autonomic Research , vol.2 , pp. 383-387
    • Gallagher, D.1    Terenzi, T.2    de Meersman, R.3
  • 48
    • 0036894195 scopus 로고    scopus 로고
    • Lower heart rate variability is associated with the development of coronary heart disease in individuals with diabetes: the atherosclerosis risk in communities (ARIC) study
    • Liao D, Carnethon M, Evans GW, Cascio WE, Heiss G, (2002) Lower heart rate variability is associated with the development of coronary heart disease in individuals with diabetes: the atherosclerosis risk in communities (ARIC) study. Diabetes 51: 3524-3531.
    • (2002) Diabetes , vol.51 , pp. 3524-3531
    • Liao, D.1    Carnethon, M.2    Evans, G.W.3    Cascio, W.E.4    Heiss, G.5
  • 50
    • 0032937530 scopus 로고    scopus 로고
    • Aberrant parasympathetic and Hemodynamic function distinguishes a subgroup of psyologically distressed individuals with asymptomatic type-I diabetes mellitus,
    • Motivala SJ, Hurwitz BE, Lagreca AM, Llabre MM, Marks JB, et al. (1999) Aberrant parasympathetic and Hemodynamic function distinguishes a subgroup of psyologically distressed individuals with asymptomatic type-I diabetes mellitus, International Journal of Behavioral Medicine 6: 78-94.
    • (1999) International Journal of Behavioral Medicine , vol.6 , pp. 78-94
    • Motivala, S.J.1    Hurwitz, B.E.2    Lagreca, A.M.3    Llabre, M.M.4    Marks, J.B.5
  • 51
    • 78649465671 scopus 로고    scopus 로고
    • Evaluación de un detector de complejo QRS basado en la wavelet de Haar usando las bases de datos MIT-BIH de arritmias y Europea del segmento ST y de la onda T
    • Gutierrez A, Lara M, Hernandez PR, (2005) Evaluación de un detector de complejo QRS basado en la wavelet de Haar usando las bases de datos MIT-BIH de arritmias y Europea del segmento ST y de la onda T. Computación y Sistemas 8: 293-302.
    • (2005) Computación Y Sistemas , vol.8 , pp. 293-302
    • Gutierrez, A.1    Lara, M.2    Hernandez, P.R.3
  • 52
    • 0028031540 scopus 로고
    • Comparison of methods for removal of ectopy in measurement of heart rate variability
    • Lippman N, Stein KM, Lerman BB, (1994) Comparison of methods for removal of ectopy in measurement of heart rate variability. Am J Physiol Heart Circ Physiol 267: H411-H418.
    • (1994) Am J Physiol Heart Circ Physiol , vol.267
    • Lippman, N.1    Stein, K.M.2    Lerman, B.B.3
  • 53
    • 0020750980 scopus 로고
    • Percentage Points for a Generalized ESD Many-Outlier Procedure
    • Rosner B, (1983) Percentage Points for a Generalized ESD Many-Outlier Procedure. Technometrics 25: 165-172.
    • (1983) Technometrics , vol.25 , pp. 165-172
    • Rosner, B.1
  • 54
    • 79952212614 scopus 로고    scopus 로고
    • Análisis de la variabilidad de la frecuencia cardíaca integrando la señal de la frecuencia respiratoria
    • B. Eng. Thesis, Universidad Autonoma de Occidente, Cali, Colombia
    • Ramirez-Villegas JF, Lam-Espinosa E, (2009) Análisis de la variabilidad de la frecuencia cardíaca integrando la señal de la frecuencia respiratoria. B. Eng. Thesis, Universidad Autonoma de Occidente, Cali, Colombia.
    • (2009)
    • Ramirez-Villegas, J.F.1    Lam-Espinosa, E.2
  • 56
    • 0035970026 scopus 로고    scopus 로고
    • Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J Neurosci
    • Rosso OA, Blanco S, Yordanova J, Kolev V, Figliola A, et al. (2001) Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J Neurosci Methods 105: 65-75.
    • (2001) Methods , vol.105 , pp. 65-75
    • Rosso, O.A.1    Blanco, S.2    Yordanova, J.3    Kolev, V.4    Figliola, A.5
  • 57
    • 0001384773 scopus 로고    scopus 로고
    • Time-Frequency analysis of electroencephalogram series (iii): Information transfer function and wavelet packets
    • Blanco S, Figliola A, Quian QR, Rosso OA, Serrano E, (1998) Time-Frequency analysis of electroencephalogram series (iii): Information transfer function and wavelet packets. Phys Rev E 57: 932-940.
    • (1998) Phys Rev E , vol.57 , pp. 932-940
    • Blanco, S.1    Figliola, A.2    Quian, Q.R.3    Rosso, O.A.4    Serrano, E.5
  • 58
    • 0034602826 scopus 로고    scopus 로고
    • Chaos Theory, Heart Rate Variability, and Arrhythmic Mortality
    • Lombardi F, (2000) Chaos Theory, Heart Rate Variability, and Arrhythmic Mortality. Circulation 101: 8-10.
    • (2000) Circulation , vol.101 , pp. 8-10
    • Lombardi, F.1
  • 60
    • 0001394076 scopus 로고
    • Measurement of the Lyapunov spectrum from a chaotic time series
    • Sano M, Sawada Y, (1985) Measurement of the Lyapunov spectrum from a chaotic time series. Physical Review Letters 55: 1082-1085.
    • (1985) Physical Review Letters , vol.55 , pp. 1082-1085
    • Sano, M.1    Sawada, Y.2
  • 62
    • 0035679921 scopus 로고    scopus 로고
    • Assessing Serial Irregularity and its Implications for Health
    • Pincus SM, (2001) Assessing Serial Irregularity and its Implications for Health. Annals of the New York Academy of Sciences 954: 245-267.
    • (2001) Annals of the New York Academy of Sciences , vol.954 , pp. 245-267
    • Pincus, S.M.1
  • 64
    • 29544444769 scopus 로고    scopus 로고
    • Neural Networks: A Comprehensive Foundation
    • Haykin S, (1999) Neural Networks: A Comprehensive Foundation. Prentice Hall, inc. pp. 823.
    • (1999) Prentice Hall, Inc , pp. 823
    • Haykin, S.1
  • 66
  • 67
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T, (2006) An introduction to ROC analysis. Pat Rec Lett 27: 861-874.
    • (2006) Pat Rec Lett , vol.27 , pp. 861-874
    • Fawcett, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.