메뉴 건너뛰기




Volumn 4, Issue 2, 2011, Pages 44-52

Prelocabc: A novel predictor of protein sub-cellular localization using a Bayesian classifier

Author keywords

Bayesian model; Bioinformatics; Classifier; Sub cellular localization

Indexed keywords

AMINO ACID COMPOSITION; ARTICLE; BAYES THEOREM; CELL SELECTION; CELLULAR DISTRIBUTION; CLASSIFICATION ALGORITHM; CONTROLLED STUDY; HUMAN; MASS SPECTROMETRY; MATHEMATICAL MODEL; NONHUMAN; ONLINE SYSTEM; PREDICTION; PROTEIN FUNCTION; PROTEIN LOCALIZATION; PROTEIN MOTIF; SEQUENCE ANALYSIS; SIGNAL TRANSDUCTION; STRUCTURAL HOMOLOGY;

EID: 79952148058     PISSN: None     EISSN: 0974276X     Source Type: Journal    
DOI: 10.4172/jpb.1000165     Document Type: Article
Times cited : (3)

References (43)
  • 1
  • 2
    • 0346874342 scopus 로고    scopus 로고
    • Proteomic characterization of the human centrosome by protein correlation profiling
    • Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, et al. (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426: 570-574.
    • (2003) Nature , vol.426 , pp. 570-574
    • Andersen, J.S.1    Wilkinson, C.J.2    Mayor, T.3    Mortensen, P.4    Nigg, E.A.5
  • 3
    • 33645993265 scopus 로고    scopus 로고
    • Global survey of organ and organelle protein expression in mouse: Combined proteomic and transcriptomic profiling
    • Kislinger T, Cox B, Kannan A, Chung C, Hu P, et al. (2006) Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell 125: 173-186.
    • (2006) Cell , vol.125 , pp. 173-186
    • Kislinger, T.1    Cox, B.2    Kannan, A.3    Chung, C.4    Hu, P.5
  • 4
    • 33749257546 scopus 로고    scopus 로고
    • A dataset of human fetal liver proteome identified by sub-cellular fractionation and multiple protein separation and identification technology
    • Ying W, Jiang Y, Guo L, Hao Y, Zhang Y, et al. (2006) A dataset of human fetal liver proteome identified by sub-cellular fractionation and multiple protein separation and identification technology. Mol cell proteomics 5: 1703-1707.
    • (2006) Mol Cell Proteomics , vol.5 , pp. 1703-1707
    • Ying, W.1    Jiang, Y.2    Guo, L.3    Hao, Y.4    Zhang, Y.5
  • 5
    • 33646473345 scopus 로고    scopus 로고
    • A mammalian organelle map by protein correlation profiling
    • Foster LJ, de Hoog CL, Zhang Y, Zhang Y, Xie X, et al. (2006) A mammalian organelle map by protein correlation profiling. Cell 125: 187-199.
    • (2006) Cell , vol.125 , pp. 187-199
    • Foster, L.J.1    de Hoog, C.L.2    Zhang, Y.3    Zhang, Y.4    Xie, X.5
  • 6
    • 0030614959 scopus 로고    scopus 로고
    • Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites
    • Nielsen H, Engelbrecht J, Brunak S, Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10: 1-6.
    • (1997) Protein Eng , vol.10 , pp. 1-6
    • Nielsen, H.1    Engelbrecht, J.2    Brunak, S.3    Heijne, G.4
  • 7
    • 0029915525 scopus 로고    scopus 로고
    • Computational method to predict mitochondrially imported proteins and their targeting sequences
    • Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J biochem 241: 779-786.
    • (1996) Eur J Biochem , vol.241 , pp. 779-786
    • Claros, M.G.1    Vincens, P.2
  • 8
    • 0034697980 scopus 로고    scopus 로고
    • Predicting sub-cellular localization of proteins based on their N-terminal amino acid sequence
    • Emanuelsson O, Nielsen H, Brunak S, Heijne G (2000) Predicting sub-cellular localization of proteins based on their N-terminal amino acid sequence. J mol biol 300: 1005-1016.
    • (2000) J Mol Biol , vol.300 , pp. 1005-1016
    • Emanuelsson, O.1    Nielsen, H.2    Brunak, S.3    Heijne, G.4
  • 9
    • 34248531753 scopus 로고    scopus 로고
    • Locating proteins in the cell using TargetP, SignalP and related tools
    • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat protoc 2: 953-971.
    • (2007) Nat Protoc , vol.2 , pp. 953-971
    • Emanuelsson, O.1    Brunak, S.2    von Heijne, G.3    Nielsen, H.4
  • 11
    • 0027105007 scopus 로고
    • A knowledge base for predicting protein localization sites in eukaryotic cells
    • Nakai K, Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897-911.
    • (1992) Genomics , vol.14 , pp. 897-911
    • Nakai, K.1    Kanehisa, M.2
  • 12
    • 3242875263 scopus 로고    scopus 로고
    • MITOPRED: A genome-scale method for prediction of nuclear-encoded mitochondrial proteins
    • Guda C, Fahy E, Subramaniam S (2004) MITOPRED: A genome-scale method for prediction of nuclear-encoded mitochondrial proteins. Bioinformatics 20: 1785-1794
    • (2004) Bioinformatics , vol.20 , pp. 1785-1794
    • Guda, C.1    Fahy, E.2    Subramaniam, S.3
  • 13
    • 27744493876 scopus 로고    scopus 로고
    • PTARGET a new method for predicting protein sub-cellular localization in eukaryotes
    • Guda C, Subramaniam S (2005) pTARGET a new method for predicting protein sub-cellular localization in eukaryotes. Bioinformatics 21: 3963-3969.
    • (2005) Bioinformatics , vol.21 , pp. 3963-3969
    • Guda, C.1    Subramaniam, S.2
  • 14
    • 54949120643 scopus 로고    scopus 로고
    • Improving subcellular localization prediction using text classification and the gene ontology
    • Fyshe A, Liu Y, Szafron D, Greiner R, Lu P (2008) Improving subcellular localization prediction using text classification and the gene ontology. Bioinformatics 24: 2512-2517.
    • (2008) Bioinformatics , vol.24 , pp. 2512-2517
    • Fyshe, A.1    Liu, Y.2    Szafron, D.3    Greiner, R.4    Lu, P.5
  • 15
    • 56649094590 scopus 로고    scopus 로고
    • Protein networks markedly improve prediction of subcellular localization in multiple eukaryotic species
    • Lee K, Chuang HY, Beyer A, Sung MK, Huh WK, et al. (2008) Protein networks markedly improve prediction of subcellular localization in multiple eukaryotic species. Nucleic Acids Res 36: e136.
    • (2008) Nucleic Acids Res , vol.36
    • Lee, K.1    Chuang, H.Y.2    Beyer, A.3    Sung, M.K.4    Huh, W.K.5
  • 16
    • 64049083918 scopus 로고    scopus 로고
    • Protein-protein interaction as a predictor of subcellular location
    • Shin CJ, Wong S, Davis MJ, Ragan MA (2009) Protein-protein interaction as a predictor of subcellular location. BMC Syst Biol 25: 3-28.
    • (2009) BMC Syst Biol , vol.25 , pp. 3-28
    • Shin, C.J.1    Wong, S.2    Davis, M.J.3    Ragan, M.A.4
  • 18
    • 3242876302 scopus 로고    scopus 로고
    • Proteome Analyst: Custom predictions with explanations in a web-based tool for high-throughput proteome annotations
    • Szafron D, Lu P, Greiner R, Wishart DS, Poulin B et al. (2004) Proteome Analyst: custom predictions with explanations in a web-based tool for high-throughput proteome annotations. Nucleic Acids Res 32: W365-W371
    • (2004) Nucleic Acids Res , vol.32
    • Szafron, D.1    Lu, P.2    Greiner, R.3    Wishart, D.S.4    Poulin, B.5
  • 20
    • 33745634395 scopus 로고    scopus 로고
    • Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences
    • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658-1659.
    • (2006) Bioinformatics , vol.22 , pp. 1658-1659
    • Li, W.1    Godzik, A.2
  • 21
    • 33846010187 scopus 로고    scopus 로고
    • Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence
    • Du P, Li Y (2006) Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence. BMC Bioinformatics 7: 518.
    • (2006) BMC Bioinformatics , vol.7 , pp. 518
    • Du, P.1    Li, Y.2
  • 22
    • 2342431029 scopus 로고    scopus 로고
    • The Hera database and its use in the characterization of endoplasmic reticulum proteins
    • Scott M, Lu G, Hallett M, Thomas DY (2004) The Hera database and its use in the characterization of endoplasmic reticulum proteins. Bioinformatics 20: 937-944.
    • (2004) Bioinformatics , vol.20 , pp. 937-944
    • Scott, M.1    Lu, G.2    Hallett, M.3    Thomas, D.Y.4
  • 24
    • 33646861792 scopus 로고    scopus 로고
    • MultiLoc: Prediction of protein sub-cellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition
    • Höglund A, Dönnes P, Blum T, Adolph HW, Kohlbacher O (2006) MultiLoc: prediction of protein sub-cellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics 22: 1158-1165.
    • (2006) Bioinformatics , vol.22 , pp. 1158-1165
    • Höglund, A.1    Dönnes, P.2    Blum, T.3    Adolph, H.W.4    Kohlbacher, O.5
  • 26
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J Royal Stat Soc 36: 111-147.
    • (1974) J Royal Stat Soc , vol.36 , pp. 111-147
    • Stone, M.1
  • 27
    • 0016772212 scopus 로고
    • Comparison of the predicted and observed secondary structure of T4 phage lysozyme
    • Matthew BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405: 442-451.
    • (1975) Biochim Biophys Acta , vol.405 , pp. 442-451
    • Matthew, B.W.1
  • 28
    • 0347093598 scopus 로고    scopus 로고
    • Prediction of protein sub-cellular localizations using fuzzy k-NN method
    • Huang Y, Li YD (2004) Prediction of protein sub-cellular localizations using fuzzy k-NN method. Bioinform 20: 21-28.
    • (2004) Bioinform , vol.20 , pp. 21-28
    • Huang, Y.1    Li, Y.D.2
  • 29
    • 57349156130 scopus 로고    scopus 로고
    • Analysis of 2 x 2 tables of frequencies: Matching test to experimental design
    • Ludbrook J (2008) Analysis of 2 x 2 tables of frequencies: matching test to experimental design. Int J Epidemiol 37: 1430-1435.
    • (2008) Int J Epidemiol , vol.37 , pp. 1430-1435
    • Ludbrook, J.1
  • 30
    • 40249110012 scopus 로고    scopus 로고
    • ProLoc-GO: Utilizing informative Gene Ontology terms for sequence-based prediction of protein subcellular localization
    • Huang WL, Tung CW, Ho SW, Hwang SF, Ho SY (2008) ProLoc-GO: utilizing informative Gene Ontology terms for sequence-based prediction of protein subcellular localization. BMC Bioinformatics 9: 80.
    • (2008) BMC Bioinformatics , vol.9 , pp. 80
    • Huang, W.L.1    Tung, C.W.2    Ho, S.W.3    Hwang, S.F.4    Ho, S.Y.5
  • 31
    • 44449101758 scopus 로고    scopus 로고
    • Supervised learning method for the prediction of sub-cellular localization of proteins using amino acid and amino acid pair composition
    • Habib T, Zhang C, Yang JY, Yang MQ, Deng Y (2008) Supervised learning method for the prediction of sub-cellular localization of proteins using amino acid and amino acid pair composition. BMC Genomics 9: S16.
    • (2008) BMC Genomics , vol.9
    • Habib, T.1    Zhang, C.2    Yang, J.Y.3    Yang, M.Q.4    Deng, Y.5
  • 32
    • 34548574787 scopus 로고    scopus 로고
    • Meta-prediction of protein subcellular localization with reduced voting
    • Liu J, Kang S, Tang C, Ellis LB, Li T (2007) Meta-prediction of protein subcellular localization with reduced voting. Nucleic Acids Res 35: e96.
    • (2007) Nucleic Acids Res , vol.35
    • Liu, J.1    Kang, S.2    Tang, C.3    Ellis, L.B.4    Li, T.5
  • 33
    • 37849032668 scopus 로고    scopus 로고
    • 'Unite and conquer': Enhanced prediction of protein subcellular localization by integrating multiple specialized tools
    • Shen YQ, Burger G (2007) 'Unite and conquer': enhanced prediction of protein subcellular localization by integrating multiple specialized tools. BMC Bioinformatics 8: 420.
    • (2007) BMC Bioinformatics , vol.8 , pp. 420
    • Shen, Y.Q.1    Burger, G.2
  • 34
    • 33947407688 scopus 로고    scopus 로고
    • Evaluation and comparison of mammalian sub-cellular localization prediction methods
    • Sprenger J, Fink JL, Teasdale RD (2006) Evaluation and comparison of mammalian sub-cellular localization prediction methods. BMC Bioinformatics 7: S3.
    • (2006) BMC Bioinformatics , vol.7
    • Sprenger, J.1    Fink, J.L.2    Teasdale, R.D.3
  • 36
    • 39449105071 scopus 로고    scopus 로고
    • Cell-PLoc: A package of Web servers for predicting sub-cellular localization of proteins in various organisms
    • Chou KC, Shen HB (2008) Cell-PLoc: a package of Web servers for predicting sub-cellular localization of proteins in various organisms. Nat protoc 3: 153-162.
    • (2008) Nat Protoc , vol.3 , pp. 153-162
    • Chou, K.C.1    Shen, H.B.2
  • 38
    • 33749523582 scopus 로고    scopus 로고
    • Organellar proteomics: Turning inventories into insights
    • Andersen JS, Mann M (2006) Organellar proteomics: turning inventories into insights. EMBO reports 7: 874-879.
    • (2006) EMBO Reports , vol.7 , pp. 874-879
    • Andersen, J.S.1    Mann, M.2
  • 39
    • 46049118177 scopus 로고    scopus 로고
    • AAIndexLoc: Predicting subcellular localization of proteins based on a new representation of sequences using amino acid indices
    • Tantoso E, Li KB (2008) AAIndexLoc: predicting subcellular localization of proteins based on a new representation of sequences using amino acid indices. Amino Acids 35: 345-53.
    • (2008) Amino Acids , vol.35 , pp. 345-353
    • Tantoso, E.1    Li, K.B.2
  • 40
    • 77952811130 scopus 로고    scopus 로고
    • Going from where to why - interpretable prediction of protein subcellular localization
    • Briesemeister S, Rahnenführer J, Kohlbacher O (2010) Going from where to why - interpretable prediction of protein subcellular localization. Bioinformatics 26: 1232-1238.
    • (2010) Bioinformatics , vol.26 , pp. 1232-1238
    • Briesemeister, S.1    Rahnenführer, J.2    Kohlbacher, O.3
  • 41
    • 54149090595 scopus 로고    scopus 로고
    • Protein subcellular location prediction using optimally weighted fuzzy k-NN algorithm
    • Nasibov E, Kandemir-Cavas C (2008) Protein subcellular location prediction using optimally weighted fuzzy k-NN algorithm. Comput Biol Chem 32: 448-51.
    • (2008) Comput Biol Chem , vol.32 , pp. 448-451
    • Nasibov, E.1    Kandemir-Cavas, C.2
  • 43
    • 39449105071 scopus 로고    scopus 로고
    • Cell-PLoc: A package of Web servers for predicting subcellular localization of proteins in various organisms
    • Chou KC, Shen HB (2008) Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat Protoc 3: 153-162.
    • (2008) Nat Protoc , vol.3 , pp. 153-162
    • Chou, K.C.1    Shen, H.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.