메뉴 건너뛰기




Volumn 73, Issue 2, 2011, Pages 285-324

Decomposition of Neurological Multivariate Time Series by State Space Modelling

Author keywords

Artifact removal; EEG FMRI fusion; Electroencephalogram; Independent Component Analysis; Kalman filtering; Time series analysis

Indexed keywords

ADULT; ALGORITHM; ARTICLE; ARTIFACT; CHILD; ELECTROCARDIOGRAPHY; ELECTROENCEPHALOGRAPHY; FACTORIAL ANALYSIS; FEMALE; FETUS; HUMAN; MALE; METHODOLOGY; NONLINEAR SYSTEM; NUCLEAR MAGNETIC RESONANCE IMAGING; PATHOPHYSIOLOGY; PHYSIOLOGY; PREGNANCY; PRINCIPAL COMPONENT ANALYSIS; REGRESSION ANALYSIS; ROLANDIC EPILEPSY; SIGNAL PROCESSING; STATISTICAL MODEL;

EID: 79952102685     PISSN: 00928240     EISSN: 15229602     Source Type: Journal    
DOI: 10.1007/s11538-010-9563-y     Document Type: Article
Times cited : (20)

References (70)
  • 1
    • 33846486684 scopus 로고    scopus 로고
    • Maximum likelihood estimation of stochastic volatility models
    • Aït-Sahalia, Y., & Kimmel, R. (2007). Maximum likelihood estimation of stochastic volatility models. J. Financ. Econ., 83, 413-452.
    • (2007) J. Financ. Econ. , vol.83 , pp. 413-452
    • Aït-Sahalia, Y.1    Kimmel, R.2
  • 2
    • 51649182225 scopus 로고
    • Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes
    • Akaike, H. (1974a). Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes. Ann. Inst. Stat. Math., 26, 363-387.
    • (1974) Ann. Inst. Stat. Math. , vol.26 , pp. 363-387
    • Akaike, H.1
  • 3
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H. (1974b). A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716-723.
    • (1974) IEEE Trans. Autom. Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 5
    • 0033870442 scopus 로고    scopus 로고
    • A method for removing imaging artifact from continuous EEG recorded during functional MRI
    • Allen, P. J., Josephs, O., & Turner, R. (2000). A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage, 12, 230-239.
    • (2000) NeuroImage , vol.12 , pp. 230-239
    • Allen, P.J.1    Josephs, O.2    Turner, R.3
  • 6
    • 0019055234 scopus 로고
    • Maximum likelihood and prediction error methods
    • Åström, K. J. (1980). Maximum likelihood and prediction error methods. Automatica, 16, 551-574.
    • (1980) Automatica , vol.16 , pp. 551-574
    • Åström, K.J.1
  • 7
    • 0032528695 scopus 로고    scopus 로고
    • Blind source separation and deconvolution: the dynamic component analysis algorithm
    • Attias, H., & Schreiner, C. E. (1998). Blind source separation and deconvolution: the dynamic component analysis algorithm. Neural Comput., 10, 1373-1424.
    • (1998) Neural Comput. , vol.10 , pp. 1373-1424
    • Attias, H.1    Schreiner, C.E.2
  • 10
    • 0035458448 scopus 로고    scopus 로고
    • Extraction of specific signals with temporal structure
    • Barros, A. K., & Cichocki, A. (2001). Extraction of specific signals with temporal structure. Neural Comput., 13, 1995-2000.
    • (2001) Neural Comput. , vol.13 , pp. 1995-2000
    • Barros, A.K.1    Cichocki, A.2
  • 12
    • 1342324773 scopus 로고    scopus 로고
    • Probabilistic independent component analysis for functional magnetic resonance imaging
    • Beckmann, C., & Smith, S. (2004). Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging, 23, 137-152.
    • (2004) IEEE Trans. Med. Imaging , vol.23 , pp. 137-152
    • Beckmann, C.1    Smith, S.2
  • 13
    • 14244251502 scopus 로고    scopus 로고
    • Tensorial extensions of independent component analysis for multisubject FMRI analysis
    • Beckmann, C., & Smith, S. (2005). Tensorial extensions of independent component analysis for multisubject FMRI analysis. NeuroImage, 25, 294-311.
    • (2005) NeuroImage , vol.25 , pp. 294-311
    • Beckmann, C.1    Smith, S.2
  • 15
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroskedasticity
    • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. J. Econom., 31, 307-327.
    • (1986) J. Econom. , vol.31 , pp. 307-327
    • Bollerslev, T.1
  • 18
    • 0038660018 scopus 로고    scopus 로고
    • Dual multivariate auto-regressive modeling in state space for temporal signal separation
    • Cheung, Y. M., & Xu, L. (2003). Dual multivariate auto-regressive modeling in state space for temporal signal separation. IEEE Trans. Syst. Man Cybern., 33, 386-398.
    • (2003) IEEE Trans. Syst. Man Cybern. , vol.33 , pp. 386-398
    • Cheung, Y.M.1    Xu, L.2
  • 19
    • 27744549951 scopus 로고    scopus 로고
    • Blind source separation and independent component analysis: a review
    • Choi, S., Cichocki, A., Park, H., & Lee, S. (2005). Blind source separation and independent component analysis: a review. Neural Inf. Process. Lett. Rev., 6, 1-57.
    • (2005) Neural Inf. Process. Lett. Rev. , vol.6 , pp. 1-57
    • Choi, S.1    Cichocki, A.2    Park, H.3    Lee, S.4
  • 20
  • 22
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • Comon, P. (1994). Independent component analysis, a new concept? Signal Process., 36, 287-314.
    • (1994) Signal Process. , vol.36 , pp. 287-314
    • Comon, P.1
  • 23
    • 33846629898 scopus 로고    scopus 로고
    • Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis
    • Delorme, A., Sejnowski, T., & Makeig, S. (2007). Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage, 34, 1443-1449.
    • (2007) NeuroImage , vol.34 , pp. 1443-1449
    • Delorme, A.1    Sejnowski, T.2    Makeig, S.3
  • 25
    • 34247280547 scopus 로고    scopus 로고
    • Model selection for convolutive ICA with an application to spatiotemporal analysis of EEG
    • Dyrholm, M., Makeig, S., & Hansen, L. K. (2007). Model selection for convolutive ICA with an application to spatiotemporal analysis of EEG. Neural Comput., 19, 934-955.
    • (2007) Neural Comput. , vol.19 , pp. 934-955
    • Dyrholm, M.1    Makeig, S.2    Hansen, L.K.3
  • 26
    • 33846470748 scopus 로고
    • A one-factor multivariate time series model of metropolitan wage rates
    • Engle, R. F., & Watson, M. (1981). A one-factor multivariate time series model of metropolitan wage rates. J. Am. Stat. Assoc., 76, 774-781.
    • (1981) J. Am. Stat. Assoc. , vol.76 , pp. 774-781
    • Engle, R.F.1    Watson, M.2
  • 27
    • 8844230292 scopus 로고    scopus 로고
    • GARCH modelling of covariance in dynamical estimation of inverse solutions
    • Galka, A., Yamashita, O., & Ozaki, T. (2004). GARCH modelling of covariance in dynamical estimation of inverse solutions. Phys. Lett. A, 333, 261-268.
    • (2004) Phys. Lett. A , vol.333 , pp. 261-268
    • Galka, A.1    Yamashita, O.2    Ozaki, T.3
  • 28
    • 33750064260 scopus 로고    scopus 로고
    • Whitening as a tool for estimating mutual information in spatiotemporal data sets
    • Galka, A., Ozaki, T., Bosch-Bayard, J., & Yamashita, O. (2006). Whitening as a tool for estimating mutual information in spatiotemporal data sets. J. Stat. Phys., 124, 1275-1315.
    • (2006) J. Stat. Phys. , vol.124 , pp. 1275-1315
    • Galka, A.1    Ozaki, T.2    Bosch-Bayard, J.3    Yamashita, O.4
  • 29
    • 77952973676 scopus 로고    scopus 로고
    • Generalized state space models for modeling non-stationary EEG time series
    • Springer series in computational neuroscience, A. Steyn-Ross and M. Steyn-Ross (Eds.), Berlin: Springer
    • Galka, A., Wong, K., & Ozaki, T. (2010). Generalized state space models for modeling non-stationary EEG time series. In A. Steyn-Ross & M. Steyn-Ross (Eds.), Springer series in computational neuroscience. Modeling phase transitions in the brain (pp. 27-52). Berlin: Springer.
    • (2010) Modeling Phase Transitions in the Brain , pp. 27-52
    • Galka, A.1    Wong, K.2    Ozaki, T.3
  • 30
    • 33845515671 scopus 로고    scopus 로고
    • A personal view of the development of system identification
    • Gevers, M. (2006). A personal view of the development of system identification. IEEE Control Syst. Mag., 26, 93-105.
    • (2006) IEEE Control Syst. Mag. , vol.26 , pp. 93-105
    • Gevers, M.1
  • 33
    • 0003406531 scopus 로고
    • 3rd edn., Chicago: University of Chicago Press
    • Harman, H. H. (1976). Modern factor analysis (3rd ed.). Chicago: University of Chicago Press.
    • (1976) Modern Factor Analysis
    • Harman, H.H.1
  • 34
    • 36148976363 scopus 로고    scopus 로고
    • A. Harvey, S. J. Koopman, and N. Shephard (Eds.), Cambridge: Cambridge University Press
    • Harvey, A., Koopman, S. J., & Shephard, N. (Eds.) (2004). State space and unobserved component models. Cambridge: Cambridge University Press.
    • (2004) State Space and Unobserved Component Models
  • 35
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw., 10, 626-634.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , pp. 626-634
    • Hyvärinen, A.1
  • 37
    • 18744404816 scopus 로고    scopus 로고
    • Independent component analysis for biomedical signals
    • James, C., & Hesse, C. (2005). Independent component analysis for biomedical signals. Physiol. Meas., 26, R15-R39.
    • (2005) Physiol. Meas. , vol.26
    • James, C.1    Hesse, C.2
  • 38
    • 35048877879 scopus 로고    scopus 로고
    • Considering temporal structures in independent component analysis
    • Nara, Japan
    • Jung, A., & Kaiser, A. (2003). Considering temporal structures in independent component analysis. In: Proc. 4th int. symp. ICA BSS, ICA 2003 (pp. 95-100). Nara, Japan, Apr. 2003.
    • (2003) Proc. 4th Int. Symp. ICA BSS, ICA 2003 , pp. 95-100
    • Jung, A.1    Kaiser, A.2
  • 40
    • 84939007907 scopus 로고
    • An innovations approach to least-squares estimation-Part I: linear filtering in additive white noise
    • Kailath, T. (1968). An innovations approach to least-squares estimation-Part I: linear filtering in additive white noise. IEEE Trans. Autom. Control, 13, 646-655.
    • (1968) IEEE Trans. Autom. Control , vol.13 , pp. 646-655
    • Kailath, T.1
  • 41
    • 0003792312 scopus 로고
    • Information and system sciences series, Englewood Cliffs: Prentice-Hall
    • Kailath, T. (1980). Information and system sciences series. Linear systems. Englewood Cliffs: Prentice-Hall.
    • (1980) Linear Systems
    • Kailath, T.1
  • 43
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. J. Basic Eng., 82, 35-45.
    • (1960) J. Basic Eng. , vol.82 , pp. 35-45
    • Kalman, R.E.1
  • 46
    • 0014974224 scopus 로고
    • Identification of stochastic linear systems using Kalman filter representation
    • Mehra, R. K. (1971). Identification of stochastic linear systems using Kalman filter representation. AIAA J., 9, 28-31.
    • (1971) AIAA J. , vol.9 , pp. 28-31
    • Mehra, R.K.1
  • 47
    • 0002232657 scopus 로고
    • Identification in control and econometrics: similarities and differences
    • Mehra, R. K. (1974). Identification in control and econometrics: similarities and differences. Ann. Econ. Soc. Meas., 3, 21-47.
    • (1974) Ann. Econ. Soc. Meas. , vol.3 , pp. 21-47
    • Mehra, R.K.1
  • 48
    • 0036928393 scopus 로고    scopus 로고
    • A resampling approach to estimate the stability of one- or multidimensional independent components
    • Meinecke, F., Ziehe, A., Kawanabe, M., & Müller, K.-R. (2002). A resampling approach to estimate the stability of one- or multidimensional independent components. IEEE Trans. Biomed. Eng., 49, 1514-1525.
    • (2002) IEEE Trans. Biomed. Eng. , vol.49 , pp. 1514-1525
    • Meinecke, F.1    Ziehe, A.2    Kawanabe, M.3    Müller, K.-R.4
  • 50
    • 0000312259 scopus 로고
    • A dynamic factor model for the analysis of multivariate time series
    • Molenaar, P. C. (1985). A dynamic factor model for the analysis of multivariate time series. Psychometrika, 50, 181-202.
    • (1985) Psychometrika , vol.50 , pp. 181-202
    • Molenaar, P.C.1
  • 51
    • 0000302959 scopus 로고
    • Separation of a mixture of independent signals using time delayed correlations
    • Molgedey, L., & Schuster, H. G. (1994). Separation of a mixture of independent signals using time delayed correlations. Phys. Rev. Lett., 72, 3634-3637.
    • (1994) Phys. Rev. Lett. , vol.72 , pp. 3634-3637
    • Molgedey, L.1    Schuster, H.G.2
  • 52
    • 3843102642 scopus 로고    scopus 로고
    • Removal of time-varying gradient artifacts from EEG data acquired during continuous fMRI
    • Negishi, M., Abildgaard, M., Nixon, T., & Constable, R. (2004). Removal of time-varying gradient artifacts from EEG data acquired during continuous fMRI. Clin. Neurophysiol., 115, 2181-2192.
    • (2004) Clin. Neurophysiol. , vol.115 , pp. 2181-2192
    • Negishi, M.1    Abildgaard, M.2    Nixon, T.3    Constable, R.4
  • 53
    • 0002537923 scopus 로고    scopus 로고
    • Estimation of parameters and eigenmodes of multivariate autoregressive models
    • Neumaier, A., & Schneider, T. (2001). Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Softw., 27, 27-57.
    • (2001) ACM Trans. Math. Softw. , vol.27 , pp. 27-57
    • Neumaier, A.1    Schneider, T.2
  • 54
    • 27544446124 scopus 로고    scopus 로고
    • Removal of FMRI environment artifacts from EEG data using optimal basis sets
    • Niazy, R., Beckmann, C., Iannetti, D., Brady, J., & Smith, S. (2005). Removal of FMRI environment artifacts from EEG data using optimal basis sets. NeuroImage, 28, 720-737.
    • (2005) NeuroImage , vol.28 , pp. 720-737
    • Niazy, R.1    Beckmann, C.2    Iannetti, D.3    Brady, J.4    Smith, S.5
  • 55
    • 34250127298 scopus 로고
    • Dynamic structural systems under indirect observation: identifiability and estimation aspects from a system theoretic perspective
    • Otter, P. (1986). Dynamic structural systems under indirect observation: identifiability and estimation aspects from a system theoretic perspective. Psychometrika, 51, 415-428.
    • (1986) Psychometrika , vol.51 , pp. 415-428
    • Otter, P.1
  • 56
    • 33748434369 scopus 로고    scopus 로고
    • An innovation approach to non-Gaussian time series analysis
    • Ozaki, T., & Iino, M. (2001). An innovation approach to non-Gaussian time series analysis. J. Appl. Probab., 38, 78-92.
    • (2001) J. Appl. Probab. , vol.38 , pp. 78-92
    • Ozaki, T.1    Iino, M.2
  • 57
    • 0001262986 scopus 로고
    • A note on the extraction of components from time series
    • Pagan, A. R. (1975). A note on the extraction of components from time series. Econometrica, 43, 163-168.
    • (1975) Econometrica , vol.43 , pp. 163-168
    • Pagan, A.R.1
  • 58
    • 84898936603 scopus 로고    scopus 로고
    • Maximum likelihood blind source separation: a context-sensitive generalization of ICA
    • M. C. Mozer, M. I. Jordan, and T. Petsche (Eds.), Cambridge: MIT Press
    • Pearlmutter, B. A., & Parra, L. C. (1997). Maximum likelihood blind source separation: a context-sensitive generalization of ICA. In M. C. Mozer, M. I. Jordan & T. Petsche (Eds.), Advances in neural information processing systems (Vol. 9, pp. 613-619). Cambridge: MIT Press.
    • (1997) Advances in Neural Information Processing Systems , pp. 613-619
    • Pearlmutter, B.A.1    Parra, L.C.2
  • 60
    • 21644483999 scopus 로고
    • Maximum likelihood estimates of linear dynamic systems
    • Rauch, H. E., Tung, G., & Striebel, C. T. (1965). Maximum likelihood estimates of linear dynamic systems. AIAA J., 3, 1445-1450.
    • (1965) AIAA J. , vol.3 , pp. 1445-1450
    • Rauch, H.E.1    Tung, G.2    Striebel, C.T.3
  • 61
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat., 6, 461-464.
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 62
    • 84939734910 scopus 로고
    • Evaluation of likelihood functions for Gaussian signals
    • Schweppe, F. (1965). Evaluation of likelihood functions for Gaussian signals. IEEE Trans. Inf. Theory, 11, 61-70.
    • (1965) IEEE Trans. Inf. Theory , vol.11 , pp. 61-70
    • Schweppe, F.1
  • 63
    • 0014814475 scopus 로고
    • Least-squares estimation: from Gauss to Kalman
    • Sorenson, H. W. (1970). Least-squares estimation: from Gauss to Kalman. IEEE Spectr., 7, 63-68.
    • (1970) IEEE Spectr. , vol.7 , pp. 63-68
    • Sorenson, H.W.1
  • 64
  • 65
    • 0026155673 scopus 로고
    • Indeterminacy and identifiability of blind separation
    • Tong, L., Liu, R., Soon, V. C., & Huang, Y. (1991). Indeterminacy and identifiability of blind separation. IEEE Trans. Circuits Syst., 38, 499-509.
    • (1991) IEEE Trans. Circuits Syst. , vol.38 , pp. 499-509
    • Tong, L.1    Liu, R.2    Soon, V.C.3    Huang, Y.4
  • 67
    • 27844472667 scopus 로고    scopus 로고
    • Linear state space feedforward and feedback structures for blind source recovery in dynamic environments
    • Waheed, K., & Salem, F. M. (2005). Linear state space feedforward and feedback structures for blind source recovery in dynamic environments. Neural Process. Lett., 22, 325-344.
    • (2005) Neural Process. Lett. , vol.22 , pp. 325-344
    • Waheed, K.1    Salem, F.M.2
  • 68
    • 33748941098 scopus 로고    scopus 로고
    • Modelling non-stationary variance in EEG time series by state space GARCH model
    • Wong, K. F. K., Galka, A., Yamashita, O., & Ozaki, T. (2006). Modelling non-stationary variance in EEG time series by state space GARCH model. Comput. Biol. Med., 36, 1327-1335.
    • (2006) Comput. Biol. Med. , vol.36 , pp. 1327-1335
    • Wong, K.F.K.1    Galka, A.2    Yamashita, O.3    Ozaki, T.4
  • 69
    • 0000997233 scopus 로고    scopus 로고
    • Blind deconvolution of dynamical systems: a state space approach
    • Zhang, L., & Cichocki, A. (2000). Blind deconvolution of dynamical systems: a state space approach. J. Signal Process., 4, 111-130.
    • (2000) J. Signal Process. , vol.4 , pp. 111-130
    • Zhang, L.1    Cichocki, A.2
  • 70
    • 0002845302 scopus 로고    scopus 로고
    • TDSEP-an efficient algorithm for blind separation using time structure
    • L. Niklasson, M. Bodén, and T. Ziemke (Eds.), Berlin: Springer
    • Ziehe, A., & Müller, K.-R. (1998). TDSEP-an efficient algorithm for blind separation using time structure. In L. Niklasson, M. Bodén & T. Ziemke (Eds.), Proc. 8th int. conf. artificial neural networks, ICANN'98 (pp. 675-680). Berlin: Springer.
    • (1998) Proc. 8th Int. Conf. Artificial Neural Networks, ICANN'98 , pp. 675-680
    • Ziehe, A.1    Müller, K.-R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.