-
1
-
-
67650081271
-
Analysis of long queries in a large scale search log
-
New York, NY, USA: ACM
-
M. Bendersky and W. B. Croft, "Analysis of long queries in a large scale search log," in WSCD '09: Proceedings of the 2009 workshop on Web Search Click Data. New York, NY, USA: ACM, 2009, pp. 8-14.
-
(2009)
WSCD '09: Proceedings of the 2009 Workshop on Web Search Click Data
, pp. 8-14
-
-
Bendersky, M.1
Croft, W.B.2
-
2
-
-
42549140738
-
An experimental comparison of click position-bias models
-
New York, NY, USA: ACM
-
N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey, "An experimental comparison of click position-bias models," in WSDM '08: Proceedings of the international conference on Web search and web data mining. New York, NY, USA: ACM, 2008, pp. 87-94.
-
(2008)
WSDM '08: Proceedings of the International Conference on Web Search and Web Data Mining
, pp. 87-94
-
-
Craswell, N.1
Zoeter, O.2
Taylor, M.3
Ramsey, B.4
-
4
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
[Online]. Available
-
J. H. Friedman, "Greedy function approximation: A gradient boosting machine," Annals of Statistics, vol. 29, pp. 1189-1232, 2001. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.869
-
(2001)
Annals of Statistics
, vol.29
, pp. 1189-1232
-
-
Friedman, J.H.1
-
5
-
-
84943229857
-
The paraphrase search assistant: Terminological feedback for iterative information seeking
-
New York, NY, USA: ACM
-
P. G. Anick and S. Tipirneni, "The paraphrase search assistant: terminological feedback for iterative information seeking," in Proc. of the 22nd international ACM SIGIR conference on research and development in information retrieval. New York, NY, USA: ACM, 1999, pp. 153-159.
-
(1999)
Proc. of the 22nd International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 153-159
-
-
Anick, P.G.1
Tipirneni, S.2
-
6
-
-
19944411179
-
Mining anchor text for query refinement
-
New York, NY, USA: ACM
-
R. Kraft and J. Zien, "Mining anchor text for query refinement," in WWW '04: Proceedings of the 13th international conference on World Wide Web. New York, NY, USA: ACM, 2004, pp. 666-674.
-
(2004)
WWW '04: Proceedings of the 13th International Conference on World Wide Web
, pp. 666-674
-
-
Kraft, R.1
Zien, J.2
-
7
-
-
33745770264
-
Concept-based interactive query expansion
-
New York, NY, USA: ACM
-
B. M. Fonseca, P. Golgher, B. Pôssas, B. Ribeiro-Neto, and N. Ziviani, "Concept-based interactive query expansion," in CIKM '05: Proceedings of the 14th ACM international conference on Information and knowledge management. New York, NY, USA: ACM, 2005, pp. 696-703.
-
(2005)
CIKM '05: Proceedings of the 14th ACM International Conference on Information and Knowledge Management
, pp. 696-703
-
-
Fonseca, B.M.1
Golgher, P.2
Pôssas, B.3
Ribeiro-Neto, B.4
Ziviani, N.5
-
8
-
-
41849087870
-
Ranking very many typed entities on wikipedia
-
New York, NY, USA: ACM
-
H. Zaragoza, H. Rode, P. Mika, J. Atserias, M. Ciaramita, and G. Attardi, "Ranking very many typed entities on wikipedia," in CIKM '07: Proceedings of the sixteenth ACM conference on Conference on information and knowledge management. New York, NY, USA: ACM, 2007, pp. 1015-1018.
-
(2007)
CIKM '07: Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management
, pp. 1015-1018
-
-
Zaragoza, H.1
Rode, H.2
Mika, P.3
Atserias, J.4
Ciaramita, M.5
Attardi, G.6
-
10
-
-
79952088144
-
Effectiveness of combined features for machine learning based question classification
-
M. Skowron and K. Araki, "Effectiveness of combined features for machine learning based question classification," Information and Media Technologies, vol. 1, no. 1, pp. 461-481, 2006.
-
(2006)
Information and Media Technologies
, vol.1
, Issue.1
, pp. 461-481
-
-
Skowron, M.1
Araki, K.2
-
11
-
-
84865624822
-
A dynamic bayesian network click model for web search ranking
-
O. Chapelle and Y. Zhang, "A dynamic bayesian network click model for web search ranking," in Proceedings of the 18th international conference on World wide web, New York, USA, 2009, pp. 1-10.
-
Proceedings of the 18th International Conference on World Wide Web, New York, USA, 2009
, pp. 1-10
-
-
Chapelle, O.1
Zhang, Y.2
-
12
-
-
74549138522
-
Stochastic gradient boosted distributed decision trees
-
New York, NY, USA: ACM
-
J. Ye, J.-H. Chow, J. Chen, and Z. Zheng, "Stochastic gradient boosted distributed decision trees," in CIKM '09: Proceeding of the 18th ACM conference on Information and knowledge management. New York, NY, USA: ACM, 2009, pp. 2061-2064.
-
(2009)
CIKM '09: Proceeding of the 18th ACM Conference on Information and Knowledge Management
, pp. 2061-2064
-
-
Ye, J.1
Chow, J.-H.2
Chen, J.3
Zheng, Z.4
-
13
-
-
36448953520
-
A regression framework for learning ranking functions using relative relevance judgments
-
New York, NY, USA: ACM
-
Z. Zheng, K. Chen, G. Sun, and H. Zha, "A regression framework for learning ranking functions using relative relevance judgments," in SIGIR '07. New York, NY, USA: ACM, 2007, pp. 287-294.
-
(2007)
SIGIR '07
, pp. 287-294
-
-
Zheng, Z.1
Chen, K.2
Sun, G.3
Zha, H.4
-
14
-
-
0037186544
-
Stochastic gradient boosting
-
February [Online]. Available
-
J. H. Friedman, "Stochastic gradient boosting," Comput. Stat. Data Anal., vol. 38, no. 4, pp. 367-378, February 2002. [Online]. Available: http://dx.doi.org/10.1016/S0167-9473(01)00065-2
-
(2002)
Comput. Stat. Data Anal.
, vol.38
, Issue.4
, pp. 367-378
-
-
Friedman, J.H.1
-
15
-
-
0002714543
-
Making large-scale support vector machine learning practical
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds., [Online]. Available
-
T. Joachims, "Making large-scale support vector machine learning practical," in Advances in kernel methods: support vector learning, B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds., 1999, pp. 169-184. [Online]. Available: http://portal.acm.org/citation.cfm?id=299104
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
16
-
-
64149115569
-
Sparse online learning via truncated gradient
-
J. Langford, L. Li, and T. Zhang, "Sparse online learning via truncated gradient," J. Mach. Learn. Res., vol. 10, pp. 777-801, 2009.
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 777-801
-
-
Langford, J.1
Li, L.2
Zhang, T.3
-
17
-
-
0033645041
-
Ir evaluation methods for retrieving highly relevant documents
-
New York, NY, USA: ACM
-
K. Järvelin and J. Kekäläinen, "Ir evaluation methods for retrieving highly relevant documents," in SIGIR '00: Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval. New York, NY, USA: ACM, 2000, pp. 41-48.
-
(2000)
SIGIR '00: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 41-48
-
-
Järvelin, K.1
Kekäläinen, J.2
|