메뉴 건너뛰기




Volumn 24, Issue 3, 2011, Pages 543-554

Design of information granule-oriented RBF neural networks and its application to power supply for high-field magnet

Author keywords

Fuzzy C Means (FCM) clustering method; Genetic algorithm; Information granule oriented radial basis function (RBF) neural networks; Information granules; K Means clustering; Power supply for high field magnet (PSHFM)

Indexed keywords

ACCURATE PREDICTION; ACTIVATION FUNCTIONS; CLUSTERING METHODS; COMPREHENSIVE DESIGNS; DATA SETS; FUZZIFICATIONS; FUZZY C MEANS CLUSTERING; FUZZY C-MEANS; GAUSSIAN FUNCTIONS; GENERALIZATION CAPABILITY; HIDDEN LAYERS; HIGH COSTS; HIGH FIELD MAGNETS; IDENTIFICATION PROCESS; INFORMATION GRANULATION; INFORMATION GRANULES; K-MEANS; K-MEANS CLUSTERING; LEARNING MECHANISM; MODELING POWER; NONLINEAR CHARACTERISTICS; PERFORMANCE INDICES; POWER SUPPLY; POWER SUPPLY FOR HIGH-FIELD MAGNET (PSHFM); RADIAL BASIS FUNCTION NEURAL NETWORKS; RADIAL BASIS FUNCTIONS; RBF NEURAL NETWORK; RECEPTIVE FIELDS; SMALL SIZE; WEIGHT FACTOR; WEIGHTED OBJECTIVE FUNCTION;

EID: 79951949969     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2010.11.001     Document Type: Article
Times cited : (16)

References (33)
  • 1
    • 59549104952 scopus 로고    scopus 로고
    • Applications of computational intelligence techniques for solving the revived optimal power flow problem
    • M.R. AlRashidi, and M.E. El-Hawary Applications of computational intelligence techniques for solving the revived optimal power flow problem Electric Power Systems Research 79 2009 694 702
    • (2009) Electric Power Systems Research , vol.79 , pp. 694-702
    • Alrashidi, M.R.1    El-Hawary, M.E.2
  • 2
    • 34250787570 scopus 로고    scopus 로고
    • Modelling of electrostatic fluidized bed (EFB) coating process using artificial neural networks
    • DOI 10.1016/j.engappai.2006.06.013, PII S0952197606001242
    • M. Barletta, A. Gisario, and S. Guarino Modelling of electrostatic fluidized bed (EFB) coating process using artificial neural networks Engineering Applications of Artificial Intelligence 20 2007 721 733 (Pubitemid 46962282)
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.6 , pp. 721-733
    • Barletta, M.1    Gisario, A.2    Guarino, S.3
  • 5
    • 3242732043 scopus 로고    scopus 로고
    • Design and performance of compensator for decremental persistent current in HTS magnets using linear type magnetic flux pump
    • Y.D. Chung, I. Muta, T. Hoshino, T. Nakamura, and M.H. Sohn Design and performance of compensator for decremental persistent current in HTS magnets using linear type magnetic flux pump Cryogenics 44 11 2004 839 844
    • (2004) Cryogenics , vol.44 , Issue.11 , pp. 839-844
    • Chung, Y.D.1    Muta, I.2    Hoshino, T.3    Nakamura, T.4    Sohn, M.H.5
  • 6
    • 21944457974 scopus 로고    scopus 로고
    • Characteristics of a persistent current compensator for superconducting NMR magnets using linear type magnetic flux pump
    • DOI 10.1109/TASC.2005.849589
    • Y.D. Chung, I. Muta, T. Hoshino, and T. Nakamura Characteristics of a persistent current compensator for superconducting NMR magnets using linear type magnetic flux pump IEEE Transactions of Applied Superconductivity 15 2 2005 1338 1341 (Pubitemid 40964123)
    • (2005) IEEE Transactions on Applied Superconductivity , vol.15 , Issue.2 PART II , pp. 1338-1341
    • Chung, Y.D.1    Muta, I.2    Hoshino, T.3    Nakamura, T.4
  • 7
    • 33746630275 scopus 로고    scopus 로고
    • Current pumping performance of linear-type magnetic flux pump with use of feedback control circuit system
    • DOI 10.1109/TASC.2006.870452, 1643173
    • Y.D. Chung, T. Hoshino, and T. Nakamura Current pumping performance of linear-type magnetic flux pump with use of feedback control circuit system IEEE Transactions of Applied Superconductivity 16 2 2006 1638 1641 (Pubitemid 44150163)
    • (2006) IEEE Transactions on Applied Superconductivity , vol.16 , Issue.2 , pp. 1638-1641
    • Chung, Y.1    Hoshino, T.2    Nakamura, T.3
  • 8
    • 33747881516 scopus 로고    scopus 로고
    • Support vector machines versus multi-layer perceptrons for efficient off-line signature recognition
    • DOI 10.1016/j.engappai.2005.12.006, PII S0952197606000352, Special Section on Innovative Production Machines and Systems
    • E. Frias-Martinez, A. Sanchez, and J. Velez Support vector machines versus multi-layer perceptrons for efficient off-line signature recognition Engineering Applications of Artificial Intelligence 19 2006 693 704 (Pubitemid 44292511)
    • (2006) Engineering Applications of Artificial Intelligence , vol.19 , Issue.6 , pp. 693-704
    • Frias-Martinez, E.1    Sanchez, A.2    Velez, J.3
  • 9
    • 36148930640 scopus 로고    scopus 로고
    • A neural network-assisted finite element analysis of cold flat rolling
    • DOI 10.1016/j.engappai.2006.10.001, PII S0952197606001618
    • P.P. Gudur, and U.S. Dixit A neural network-assisted finite element analysis of cold flat rolling Engineering Applications of Artificial Intelligence 21 2008 43 52 (Pubitemid 350117446)
    • (2008) Engineering Applications of Artificial Intelligence , vol.21 , Issue.1 , pp. 43-52
    • Gudur, P.P.1    Dixit, U.S.2
  • 12
    • 0034839230 scopus 로고    scopus 로고
    • Microampere flux pumps for superconducting NMR magnets Part 1: Basic concept and microtesla flux measurement
    • DOI 10.1016/S0011-2275(01)00083-2, PII S0011227501000832
    • Y. Iwasa Microampere flux pump for superconducting NMR magnets Part1; basic concept and microtesla flux measurement Cryogenics 41 2001 385 391 (Pubitemid 32833584)
    • (2001) Cryogenics , vol.41 , Issue.5-6 , pp. 385-391
    • Iwasa, Y.1
  • 15
    • 0023349750 scopus 로고
    • An Empirical Validation of Software Cost Estimation Models
    • C.F. Kemerer An Empirical Validation of Software Cost Estimation Models Comm. ACM 30 5 1987 416 429
    • (1987) Comm. ACM , vol.30 , Issue.5 , pp. 416-429
    • Kemerer, C.F.1
  • 16
    • 33750527089 scopus 로고    scopus 로고
    • A speed and accuracy test of backpropagation and RBF neural networks for small-signal models of active devices
    • DOI 10.1016/j.engappai.2006.01.016, PII S0952197606000492
    • D. Langoni, M.H. Weatherspoon, S.Y. Foo, and H.A. Martinez A speed and accuracy test of backpropagation and RBF neural networks for small-signal models of active devices Engineering Applications of Artificial Intelligence 19 2006 883 890 (Pubitemid 44667716)
    • (2006) Engineering Applications of Artificial Intelligence , vol.19 , Issue.8 , pp. 883-890
    • Langoni, D.1    Weatherspoon, M.H.2    Foo, S.Y.3    Martinez, H.A.4
  • 17
    • 43549106152 scopus 로고    scopus 로고
    • Neural network based tire/road friction force estimation
    • DOI 10.1016/j.engappai.2007.05.001, PII S0952197607000589
    • J. Matuko, I. Petrović, and N. Perić Neural network based tire/road friction force estimation Engineering Applications of Artificial Intelligence 21 2008 442 456 (Pubitemid 351680680)
    • (2008) Engineering Applications of Artificial Intelligence , vol.21 , Issue.3 , pp. 442-456
    • Matusko, J.1    Petrovic, I.2    Peric, N.3
  • 18
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • Berkeley, University of California Press
    • MacQueen, J.B.; 1967. Some methods for classification and analysis of multivariate observations. In: Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, vol. 1, pp. 281297.
    • (1967) Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.B.1
  • 19
    • 25144494760 scopus 로고    scopus 로고
    • Prediction error estimation: A comparison of resampling methods
    • DOI 10.1093/bioinformatics/bti499
    • A.M. Molinaro, R. Simon, and R.M. Pfeiffer Prediction error estimation: a comparison of resampling methods Bioinformatics 21 2005 3301 3307 (Pubitemid 41418445)
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3301-3307
    • Molinaro, A.M.1    Simon, R.2    Pfeiffer, R.M.3
  • 20
    • 0034300570 scopus 로고    scopus 로고
    • Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems
    • S.K. Oh, and W. Pedrycz Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems Fuzzy Sets and Systems 115 2 2000 205 230
    • (2000) Fuzzy Sets and Systems , vol.115 , Issue.2 , pp. 205-230
    • Oh, S.K.1    Pedrycz, W.2
  • 22
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis function networks
    • J. Park, and I. Sandberg Universal approximation using radial-basis function networks Neural Computing 3 1991 246 257
    • (1991) Neural Computing , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.2
  • 23
    • 36248957110 scopus 로고    scopus 로고
    • Dual heuristic programming based nonlinear optimal control for a synchronous generator
    • DOI 10.1016/j.engappai.2007.03.001, PII S0952197607000401
    • J.W. Park, R.G. Harly, G.K. Venayagamoorthy, and G.S. Jang Dual heuristic programming based nonlinear optimal control for a synchronous generator Engineering Applications of Artificial Intelligence 21 2008 97 105 (Pubitemid 350123694)
    • (2008) Engineering Applications of Artificial Intelligence , vol.21 , Issue.1 , pp. 97-105
    • Park, J.-W.1    Harley, R.G.2    Venayagamoorthy, G.K.3    Jang, G.4
  • 24
    • 33750605238 scopus 로고    scopus 로고
    • Nonlinear system modeling and robust predictive control based on RBF-ARX model
    • DOI 10.1016/j.engappai.2006.05.012, PII S0952197606001059
    • H. Peng, Z.J. Yang, W. Gui, M. Wu, H. Shioya, and K. Nakano Nonlinear system modeling and robust predictive control based on RBF-ARX model Engineering Applications of Artificial Intelligence 20 2007 1 9 (Pubitemid 44692468)
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.1 , pp. 1-9
    • Peng, H.1    Yang, Z.J.2    Gui, W.3    Wu, M.4    Shioya, H.5    Nakano, K.6
  • 26
    • 75749127741 scopus 로고    scopus 로고
    • Application and comparison of computational intelligence techniques for optimal location and parameter setting of UPFC
    • H.I. Shaheen, G.I. Rashed, and S.J. Cheng Application and comparison of computational intelligence techniques for optimal location and parameter setting of UPFC Engineering Applications of Artificial Intelligence 23 2010 203 216
    • (2010) Engineering Applications of Artificial Intelligence , vol.23 , pp. 203-216
    • Shaheen, H.I.1    Rashed, G.I.2    Cheng, S.J.3
  • 27
    • 67349116014 scopus 로고    scopus 로고
    • Computational intelligence-based congestion prediction for a dynamic urban street network
    • D. Srinivasan, C.W. Chan, and P.G. Balaji Computational intelligence-based congestion prediction for a dynamic urban street network Neurocomputing 72 2009 2710 2716
    • (2009) Neurocomputing , vol.72 , pp. 2710-2716
    • Srinivasan, D.1    Chan, C.W.2    Balaji, P.G.3
  • 30
    • 31744447275 scopus 로고    scopus 로고
    • Prediction of automotive engine power and torque using least squares support vector machines and Bayesian inference
    • C.M. Vong, P.K. Wong, and Y.P. Li Prediction of automotive engine power and torque using least squares support vector machines and Bayesian inference Engineering Applications of Artificial Intelligence 19 2006 277 287
    • (2006) Engineering Applications of Artificial Intelligence , vol.19 , pp. 277-287
    • Vong, C.M.1    Wong, P.K.2    Li, Y.P.3
  • 31
    • 9944241272 scopus 로고    scopus 로고
    • Statistical and computational intelligence techniques for inferential model development: A comparative evaluation and a novel proposition for fusion
    • K. Warne, G. Prasad, S. Rezvani, and L. Maguire Statistical and computational intelligence techniques for inferential model development: a comparative evaluation and a novel proposition for fusion Engineering Applications of Artificial Intelligence 17 2004 871 885
    • (2004) Engineering Applications of Artificial Intelligence , vol.17 , pp. 871-885
    • Warne, K.1    Prasad, G.2    Rezvani, S.3    Maguire, L.4
  • 32
    • 58949103851 scopus 로고    scopus 로고
    • Neural network model-based automotive engine air/fuel ratio control and robustness evaluation
    • Y.J. Zhai, and D.L. Yu Neural network model-based automotive engine air/fuel ratio control and robustness evaluation Engineering Applications of Artificial Intelligence 22 2009 171 180
    • (2009) Engineering Applications of Artificial Intelligence , vol.22 , pp. 171-180
    • Zhai, Y.J.1    Yu, D.L.2
  • 33
    • 69249203709 scopus 로고    scopus 로고
    • Computational intelligence tools for next generation quality of service management
    • R. del-Hoyo, B. Martin-del-Brio, N. Medrano, and J. Fernandez-Navajas Computational intelligence tools for next generation quality of service management Neurocomputing 72 2009 3631 3639
    • (2009) Neurocomputing , vol.72 , pp. 3631-3639
    • Del-Hoyo, R.1    Martin-Del-Brio, B.2    Medrano, N.3    Fernandez-Navajas, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.