메뉴 건너뛰기




Volumn 20, Issue 3, 2011, Pages 837-854

Structured max-margin learning for inter-related classifier training and multilabel image annotation

Author keywords

Inter concept visual similarity; intra concept visual diversity; parallel computing; structured max margin learning; visual concept network

Indexed keywords

INTRA-CONCEPT VISUAL DIVERSITY; PARALLEL COMPUTING; STRUCTURED MAX-MARGIN LEARNING; VISUAL CONCEPT NETWORK; VISUAL SIMILARITY;

EID: 79951846242     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2010.2073476     Document Type: Article
Times cited : (35)

References (56)
  • 2
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: A large dataset for non-parametric object and scene recognition
    • Nov.
    • A. Torralba, R. Fergus, and W. T. Freeman, "80 million tiny images: A large dataset for non-parametric object and scene recognition," IEEE Trans. PatternAnal. Mach. Intell., vol. 30, no. 11, pp. 1958-1970, Nov. 2008.
    • (2008) IEEE Trans. PatternAnal. Mach. Intell. , vol.30 , Issue.11 , pp. 1958-1970
    • Torralba, A.1    Fergus, R.2    Freeman, W.T.3
  • 5
    • 59649110925 scopus 로고    scopus 로고
    • JustClick: Personalized image recommendation via exploratory search from large-scale Flickr images
    • Feb.
    • J. Fan, D. Keim, Y. Gao, H. Luo, and Z. Li, "JustClick: Personalized image recommendation via exploratory search from large-scale Flickr images," IEEE Trans. CircuitsSyst. Video Technol., vol. 19, no. 2, pp. 273-288, Feb. 2009.
    • (2009) IEEE Trans. CircuitsSyst. Video Technol. , vol.19 , Issue.2 , pp. 273-288
    • Fan, J.1    Keim, D.2    Gao, Y.3    Luo, H.4    Li, Z.5
  • 7
    • 39749186006 scopus 로고    scopus 로고
    • LabelMe: A database and web-based tool for image annotation
    • B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman, "LabelMe: A database and web-based tool for image annotation," Int. J. Comput. Vis., vol. 77, no. 1, pp. 157-173, 2008.
    • (2008) Int. J. Comput. Vis. , vol.77 , Issue.1 , pp. 157-173
    • Russell, B.C.1    Torralba, A.2    Murphy, K.P.3    Freeman, W.T.4
  • 9
    • 79951833392 scopus 로고    scopus 로고
    • MSRC [Online] Available
    • MSRC [Online]. Available: http://research.microsoft.com/
  • 10
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale invariant keypoints
    • D. Lowe, "Distinctive image features from scale invariant keypoints," Int. J. Comput. Vis., vol. 60, pp. 91-110, 2004.
    • (2004) Int. J. Comput. Vis. , vol.60 , pp. 91-110
    • Lowe, D.1
  • 13
    • 0035683431 scopus 로고    scopus 로고
    • Image indexing with mixture hierarchies
    • N. Vasconcelos, "Image indexing with mixture hierarchies," in Proc. IEEE CVPR, 2001, vol. 1, pp. I-3-I-10.
    • (2001) Proc. IEEE CVPR , vol.1
    • Vasconcelos, N.1
  • 14
    • 0141836773 scopus 로고    scopus 로고
    • Automatic linguistic indexing of pictures by a statistical modeling approach
    • Sep.
    • J. Li and J. Z. Wang, "Automatic linguistic indexing of pictures by a statistical modeling approach," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 9, pp. 1075-1088, Sep. 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.9 , pp. 1075-1088
    • Li, J.1    Wang, J.Z.2
  • 15
    • 33745155436 scopus 로고    scopus 로고
    • A Bayesian hierarchical model for learning natural scene categories
    • L. Fei-Fei and P. Perona, "A Bayesian hierarchical model for learning natural scene categories," in Proc. IEEE CVPR, 2005, pp. 524-531.
    • (2005) Proc. IEEE CVPR , pp. 524-531
    • Fei-Fei, L.1    Perona, P.2
  • 17
    • 14644408001 scopus 로고    scopus 로고
    • A Bayesian network-based framework for semantic image understanding
    • DOI 10.1016/j.patcog.2004.11.001, PII S003132030400408X, Image Understanding for Photographs
    • J. Luo, A. E. Savakis, and A. Singhal, "A Bayesian network-based framework for semantic image understanding," Pattern Recogn., vol. 38, no. 6, pp. 919-934, 2005. (Pubitemid 40308639)
    • (2005) Pattern Recognition , vol.38 , Issue.6 , pp. 919-934
    • Luo, J.1    Savakis, A.E.2    Singhal, A.3
  • 18
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random field: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira, "Conditional random field: Probabilistic models for segmenting and labeling sequence data," in Proc. ICML, 2001, pp. 282-289.
    • (2001) Proc. ICML , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 20
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural SVMs
    • T. Joachims, T. Finley, and C. Yu, "Cutting-plane training of structural SVMs,"Mach. Learning, vol. 77, no. 1, pp. 27-59, 2009.
    • (2009) Mach. Learning , vol.77 , Issue.1 , pp. 27-59
    • Joachims, T.1    Finley, T.2    Yu, C.3
  • 21
    • 56749161572 scopus 로고    scopus 로고
    • Learning to localize objects with structured output regression
    • LNCS
    • M. Blaschko and C. Lampert, "Learning to localize objects with structured output regression," in Proc. ECCV, 2008, vol. 5302, LNCS, pp. 2-15.
    • (2008) Proc. ECCV , vol.5302 , pp. 2-15
    • Blaschko, M.1    Lampert, C.2
  • 23
    • 58149151266 scopus 로고    scopus 로고
    • TexonBoost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi, "TexonBoost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context," Int. J. Comput. Vis., pp. 2-23, 2008.
    • (2008) Int. J. Comput. Vis. , pp. 2-23
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 24
    • 64049112584 scopus 로고    scopus 로고
    • Correlative linear neighborhood propagation for video annotation
    • Feb.
    • J. Tang, X. Hua, M. Wang, Z. Gu, G. Qi, and X. Wu, "Correlative linear neighborhood propagation for video annotation," IEEE Trans. Syst., Man, Cybern. B, vol. 39, no. 2, pp. 409-416, Feb. 2009.
    • (2009) IEEE Trans. Syst., Man, Cybern. B , vol.39 , Issue.2 , pp. 409-416
    • Tang, J.1    Hua, X.2    Wang, M.3    Gu, Z.4    Qi, G.5    Wu, X.6
  • 25
  • 26
    • 34547507625 scopus 로고    scopus 로고
    • Context-based concept fusion with boosted conditional random fields
    • W. Jiang, S.-F. Chang, and A. Loui, "Context-based concept fusion with boosted conditional random fields," in Proc. IEEEICASSP, 2007, pp. I-949-I-952.
    • (2007) Proc. IEEEICASSP
    • Jiang, W.1    Chang, S.-F.2    Loui, A.3
  • 28
    • 5044224293 scopus 로고    scopus 로고
    • Sharing features: Efficient boosting procedures for multi-class object detection
    • A. Torralba, K. P. Murphy, and W. T. Freeman, "Sharing features: Efficient boosting procedures for multi-class object detection," in Proc. IEEE CVPR, 2004, pp. 762-769.
    • (2004) Proc. IEEE CVPR , pp. 762-769
    • Torralba, A.1    Murphy, K.P.2    Freeman, W.T.3
  • 29
    • 38349146482 scopus 로고    scopus 로고
    • Mining multilevel image semantics via hierarchical classification
    • Feb.
    • J. Fan, Y. Gao, H. Luo, and R. Jain, "Mining multilevel image semantics via hierarchical classification," IEEE Trans. Multimedia, vol. 10, no. 2, pp. 167-187, Feb. 2008.
    • (2008) IEEE Trans. Multimedia , vol.10 , Issue.2 , pp. 167-187
    • Fan, J.1    Gao, Y.2    Luo, H.3    Jain, R.4
  • 30
    • 40849134401 scopus 로고    scopus 로고
    • Integrating concept ontology and multitask learning to achieve more effective classifier training for multilevel image annotation
    • DOI 10.1109/TIP.2008.916999
    • J. Fan, Y. Gao, and H. Luo, "Integrating concept ontology and multitask learning to achieve more effective classifier training for multi-level image annotation," IEEE Trans. Image Process., vol. 17, no. 3, pp. 407-426, Mar. 2008. (Pubitemid 351395085)
    • (2008) IEEE Transactions on Image Processing , vol.17 , Issue.3 , pp. 407-426
    • Fan, J.1    Gao, Y.2    Luo, H.3
  • 33
    • 33750294755 scopus 로고    scopus 로고
    • Multitraining support vector machine for image retrieval
    • DOI 10.1109/TIP.2006.881938
    • J. Li, N. Allinson, D. Tao, and X. Li, "Multi-training support vector machine for image retrieval," IEEE Trans. Image Process., vol. 15, no. 11, pp. 3597-3601, 2006. (Pubitemid 44615153)
    • (2006) IEEE Transactions on Image Processing , vol.15 , Issue.11 , pp. 3597-3601
    • Li, J.1    Allinson, N.2    Tao, D.3    Li, X.4
  • 34
    • 33749589757 scopus 로고    scopus 로고
    • Learningtheunifiedkernel machines for classification
    • S. Hoi, M. Lyu, and E. Y. Chang, "Learningtheunifiedkernel machines for classification," in Proc. ACMSIGKDD, 2006, pp. 187-196.
    • (2006) Proc. ACMSIGKDD , pp. 187-196
    • Hoi, S.1    Lyu, M.2    Chang, E.Y.3
  • 35
    • 4344578226 scopus 로고    scopus 로고
    • Bayesian networks for data mining
    • D. Heckerman, "Bayesian networks for data mining," Data Mining and KnowledgeDiscovery, vol. 1, no. 1, pp. 79-119, 1997. (Pubitemid 127721237)
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.1 , pp. 79-119
    • Heckerman, D.1
  • 39
    • 0002719797 scopus 로고
    • The Hungarian method for the assignment problem
    • H. W. Kuhn, "The Hungarian method for the assignment problem," Naval Res. Logistics Quarterly, vol. 2, pp. 83-97, 1955.
    • (1955) Naval Res. Logistics Quarterly , vol.2 , pp. 83-97
    • Kuhn, H.W.1
  • 40
    • 71849102736 scopus 로고    scopus 로고
    • An interactive approach for filtering out junk images from keyword-based Google search results
    • Dec.
    • Y. Gao, J. Peng, H. Luo, D. Keim, and J. Fan, "An interactive approach for filtering out junk images from keyword-based Google search results," IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 12, pp. 1851-1865, Dec. 2009.
    • (2009) IEEE Trans. Circuits Syst. Video Technol. , vol.19 , Issue.12 , pp. 1851-1865
    • Gao, Y.1    Peng, J.2    Luo, H.3    Keim, D.4    Fan, J.5
  • 41
    • 35048858274 scopus 로고    scopus 로고
    • A visual category filter for Google Images
    • R. Fergus, P. Perona, and A. Zisserman, "A visual category filter for Google Images," in Proc. ECCV, 2004, pp. 242-256.
    • (2004) Proc. ECCV , pp. 242-256
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 43
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • Aug.
    • J. Shi and J. Malik, "Normalized cuts and image segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905, Aug. 2000.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 44
    • 78149301227 scopus 로고    scopus 로고
    • A min-max cut algorithm for graph partitioning and data clustering
    • C. Ding, X. He, H. Zha, M. Gu, and H. Simon, "A min-max cut algorithm for graph partitioning and data clustering," in Proc. ICDM, 2001, pp. 107-114.
    • (2001) Proc. ICDM , pp. 107-114
    • Ding, C.1    He, X.2    Zha, H.3    Gu, M.4    Simon, H.5
  • 45
    • 77953185711 scopus 로고    scopus 로고
    • Attribute and simile classifiers for face verification
    • Kumar, A. C. Berg, P. Belhumeur, and S. Nayar, "Attribute and simile classifiers for face verification," in Proc. ICCV, 2009, pp. 365-372.
    • (2009) Proc. ICCV , pp. 365-372
    • Kumar, A.C.1    Belhumeur, B.P.2    Nayar, S.3
  • 47
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • C. H. Lampert, H. Nickisch, and S. Harmeling, "Learning to detect unseen object classes by between-class attribute transfer," in Proc. IEEE CVPR, 2009, pp. 951-958.
    • (2009) Proc. IEEE CVPR , pp. 951-958
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 50
    • 51949083216 scopus 로고    scopus 로고
    • Joint multi-label multi-instance learning for image classification
    • Z. Zha, X.-S. Hua, T. Mei, J. Wang, G.-J. Qi, and Z. Wang, "Joint multi-label multi-instance learning for image classification," in Proc. IEEE CVPR, 2008, pp. 1-8.
    • (2008) Proc. IEEE CVPR , pp. 1-8
    • Zha, Z.1    Hua, X.-S.2    Mei, T.3    Wang, J.4    Qi, G.-J.5    Wang, Z.6
  • 51
    • 84864028262 scopus 로고    scopus 로고
    • Multi-instance multi-label learning with application to scene classification
    • Z.-H. Zhu and M.-L. Zhang, "Multi-instance multi-label learning with application to scene classification," in Proc. NIPS, 2006, pp. 1609-1616.
    • (2006) Proc. NIPS , pp. 1609-1616
    • Zhu, Z.-H.1    Zhang, M.-L.2
  • 52
  • 53
    • 33845596932 scopus 로고    scopus 로고
    • Using multiple segmentations to discover objects and their extent in image collections
    • B. Russell, A. Efros, J. Sivic, W. Freeman, and A. Zisserman, "Using multiple segmentations to discover objects and their extent in image collections," in Proc. IEEE CVPR, 2006, pp. 1605-1614.
    • (2006) Proc. IEEE CVPR , pp. 1605-1614
    • Russell, B.1    Efros, A.2    Sivic, J.3    Freeman, W.4    Zisserman, A.5
  • 56
    • 77956002586 scopus 로고    scopus 로고
    • Harvesting large-scale weaklytagged image databases from the Web
    • J. Fan, Y. Shen, N. Zhou, and Y. Gao, "Harvesting large-scale weaklytagged image databases from the Web," in Proc. IEEE CVPR, 2010, pp. 802-809.
    • (2010) Proc. IEEE CVPR , pp. 802-809
    • Fan, J.1    Shen, Y.2    Zhou, N.3    Gao, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.