메뉴 건너뛰기




Volumn 69, Issue 1, 1999, Pages 47-62

Rolling learning-prediction of product formation in bioprocesses

Author keywords

Neural network; Penicillin; Product prediction; Rolling learning prediction

Indexed keywords

BACKPROPAGATION; BIOTECHNOLOGY; CARBON DIOXIDE; DATABASE SYSTEMS; FEEDFORWARD NEURAL NETWORKS; LEARNING SYSTEMS; OXYGEN; SUBSTRATES; TRANSFER FUNCTIONS;

EID: 0032997744     PISSN: 01681656     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0168-1656(99)00002-4     Document Type: Article
Times cited : (32)

References (22)
  • 1
    • 0027348327 scopus 로고
    • Artificial intelligence and the supervision of bioprocesses (Real-time knowledge-based systems and neural networks)
    • Aynsley M., Hofland A., Morris A.J., Montague G., Di Massimo C. Artificial intelligence and the supervision of bioprocesses (Real-time knowledge-based systems and neural networks). Adv. Biochem. Eng./Biotechnol. 48:1993;1-27.
    • (1993) Adv. Biochem. Eng./Biotechnol. , vol.48 , pp. 1-27
    • Aynsley, M.1    Hofland, A.2    Morris, A.J.3    Montague, G.4    Di Massimo, C.5
  • 2
    • 0025010309 scopus 로고
    • Use of neural nets for dynamic modeling and control of chemical process systems
    • Bhat N., McAvoy T.J. Use of neural nets for dynamic modeling and control of chemical process systems. Comp. Chem. Eng. 14:1990;573-583.
    • (1990) Comp. Chem. Eng. , vol.14 , pp. 573-583
    • Bhat, N.1    McAvoy, T.J.2
  • 3
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G., 1989. Approximation by superpositions of a sigmoidal function. Math. Control Signal Systems 2, 303-314.
    • (1989) Math. Control Signal Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 5
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J.L. Finding structure in time. Cognitive Sci. 14:1990;179-211.
    • (1990) Cognitive Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 6
    • 0028543466 scopus 로고
    • Dynamic data rectification by recurrent neural networks vs. traditional methods
    • Karjala T.W., Himmelblau D.M. Dynamic data rectification by recurrent neural networks vs. traditional methods. AIChE J. 40:1994;1865-1875.
    • (1994) AIChE J. , vol.40 , pp. 1865-1875
    • Karjala, T.W.1    Himmelblau, D.M.2
  • 7
    • 0026477829 scopus 로고
    • Artificial neural networks in bioprocess state estimation
    • Karim M.N., Rivera S.L. Artificial neural networks in bioprocess state estimation. Adv. Biochem. Eng./Biotechnol. 46:1992;1-31.
    • (1992) Adv. Biochem. Eng./Biotechnol. , vol.46 , pp. 1-31
    • Karim, M.N.1    Rivera, S.L.2
  • 8
    • 0031055914 scopus 로고    scopus 로고
    • Global and local neural network models in biotechnology: Application to different cultivation processes
    • Karim M.N., Yoshida T., Rivera S.L., Saucedo V.M., Eikens B., Oh G.-S. Global and local neural network models in biotechnology: application to different cultivation processes. J. Ferment. Bioeng. 83:1997;1-11.
    • (1997) J. Ferment. Bioeng. , vol.83 , pp. 1-11
    • Karim, M.N.1    Yoshida, T.2    Rivera, S.L.3    Saucedo, V.M.4    Eikens, B.5    Oh, G.-S.6
  • 9
    • 0025403609 scopus 로고
    • Improvements of the backpropagation algorithm for training neural networks
    • Leonard J.A., Kramer M.A. Improvements of the backpropagation algorithm for training neural networks. Comp. Chem. Eng. 14:1990;337-341.
    • (1990) Comp. Chem. Eng. , vol.14 , pp. 337-341
    • Leonard, J.A.1    Kramer, M.A.2
  • 11
    • 0028484517 scopus 로고
    • Neural-network contributions in biotechnology
    • Montague G., Morris J. Neural-network contributions in biotechnology. Trends Biotechnol. 12:1994;312-324.
    • (1994) Trends Biotechnol. , vol.12 , pp. 312-324
    • Montague, G.1    Morris, J.2
  • 12
    • 0026806616 scopus 로고
    • A hybrid neural network-first principles approach to process modeling
    • Psichogios D.C., Ungar L.H. A hybrid neural network-first principles approach to process modeling. AIChE J. 38:1992;1499-1511.
    • (1992) AIChE J. , vol.38 , pp. 1499-1511
    • Psichogios, D.C.1    Ungar, L.H.2
  • 13
    • 0026977508 scopus 로고
    • Using neural networks for the interpretation of bioprocess data
    • In: Karim, M.N., Stephanopoulos, G. (Eds.), Modeling and Control Biotechnical Processes 1992 Pergamon Press, Oxford.
    • Raju, G.K., Cooney, C.L., 1992. Using neural networks for the interpretation of bioprocess data. In: Karim, M.N., Stephanopoulos, G. (Eds.), Modeling and Control Biotechnical Processes 1992. IFAC Symposia Series. Pergamon Press, Oxford. Number 10, pp. 425-428.
    • (1992) IFAC Symposia Series , vol.10 , pp. 425-428
    • Raju, G.K.1    Cooney, C.L.2
  • 14
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D.E. Rumelhart, McClelland J. Cambridge, MA: M.I.T. Press. . Chapter 8
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning internal representations by error propagation. Rumelhart D.E., McClelland J. Parallel Data Processing. 1:1986;318-362 M.I.T. Press, Cambridge, MA. . Chapter 8.
    • (1986) Parallel Data Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 15
    • 0028356096 scopus 로고
    • Bioprocess optimization and control: Application of hybrid modeling
    • Schubert J., Simutis R., Dors M., Havlik I., Lübert A. Bioprocess optimization and control: application of hybrid modeling. J. Biotechnol. 35:1994;51-68.
    • (1994) J. Biotechnol. , vol.35 , pp. 51-68
    • Schubert, J.1    Simutis, R.2    Dors, M.3    Havlik, I.4    Lübert, A.5
  • 16
    • 0026868901 scopus 로고
    • Long-term predictions of chemical processes using recurrent neural networks: A parallel traing approach
    • Su H.-T., McAvoy T.J. Long-term predictions of chemical processes using recurrent neural networks: a parallel traing approach. Ind. Eng. Chem. Res. 31:1992;1338-1352.
    • (1992) Ind. Eng. Chem. Res. , vol.31 , pp. 1338-1352
    • Su, H.-T.1    McAvoy, T.J.2
  • 17
    • 0025701454 scopus 로고
    • On-line prediction of fermentation variables using neural networks
    • Thibault J., Van Breusegem V.C., Cheruy A. On-line prediction of fermentation variables using neural networks. Biotechnol. Bioeng. 43:1990;1041-1048.
    • (1990) Biotechnol. Bioeng. , vol.43 , pp. 1041-1048
    • Thibault, J.1    Van Breusegem, V.C.2    Cheruy, A.3
  • 19
    • 0001609567 scopus 로고
    • An efficient gradient based algorithm for on-line training of recurrent network trajectories
    • Williams R.J., Peng J. An efficient gradient based algorithm for on-line training of recurrent network trajectories. Neural Comput. 2:1990;490-501.
    • (1990) Neural Comput. , vol.2 , pp. 490-501
    • Williams, R.J.1    Peng, J.2
  • 20
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams R.J., Ziper D. A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1:1989;270-280.
    • (1989) Neural Comput. , vol.1 , pp. 270-280
    • Williams, R.J.1    Ziper, D.2
  • 21
    • 0242499543 scopus 로고    scopus 로고
    • One-step-ahead product predictor for profit optimization of penicillin fermentation
    • T. Yoshida, & S. Shioya. Oxford: Pergamon
    • Yuan J.Q., Vanrolleghem P.A. One-step-ahead product predictor for profit optimization of penicillin fermentation. Yoshida T., Shioya S. Computer Applications in Biotechnology. IFAC Symposium Series. 1998;183-188 Pergamon, Oxford.
    • (1998) Computer Applications in Biotechnology. IFAC Symposium Series , pp. 183-188
    • Yuan, J.Q.1    Vanrolleghem, P.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.