-
1
-
-
0002267332
-
A fractional model for mechanical stress relaxation
-
10.1080/09500839108214672
-
T. F. Nonnenmacher W. G. Glöckle 1991 A fractional model for mechanical stress relaxation Philosophical Magazine Lett. 64 2 89 93 10.1080/09500839108214672
-
(1991)
Philosophical Magazine Lett.
, vol.64
, Issue.2
, pp. 89-93
-
-
Nonnenmacher, T.F.1
Glöckle, W.G.2
-
2
-
-
0028530783
-
Capacitor theory
-
10.1109/94.326654
-
S. Westerlund 1994 Capacitor theory IEEE Trans. Dielec. Elec. Ins. 1 5 826 839 10.1109/94.326654
-
(1994)
IEEE Trans. Dielec. Elec. Ins.
, vol.1
, Issue.5
, pp. 826-839
-
-
Westerlund, S.1
-
4
-
-
0000196448
-
Basic characteristics of a fractance device
-
N. Nakagava K. Sorimachi 1992 Basic characteristics of a fractance device IEICE Trans. E75-A 12 1814 1818
-
(1992)
IEICE Trans.
, vol.75
, Issue.12
, pp. 1814-1818
-
-
Nakagava, N.1
Sorimachi, K.2
-
5
-
-
33645135087
-
A numerical algorithm for stability testing of fractional delay systems
-
1137.93375 10.1016/j.automatica.2006.01.008 2207823
-
C. Hwang Y. C. Cheng 2006 A numerical algorithm for stability testing of fractional delay systems Automatica 42 825 831 1137.93375 10.1016/j.automatica. 2006.01.008 2207823
-
(2006)
Automatica
, vol.42
, pp. 825-831
-
-
Hwang, C.1
Cheng, Y.C.2
-
6
-
-
15544389469
-
Robust speed control of a low damped electromechanical system based on CRONE control: Application to a four mass experimental test bench
-
DOI 10.1007/s11071-004-3768-2
-
J. Sabatier S. Poullain P. Latteux J. L. Thomas A. Oustaloup 2004 Robust speed control of a low damped electromechanical system based on CRONE control: application to a four mass experimental test bench Nonlinear Dynamics 38 383 400 1142.93389 10.1007/s11071-004-3768-2 (Pubitemid 40400628)
-
(2004)
Nonlinear Dynamics
, vol.38
, Issue.1-4
, pp. 383-400
-
-
Sabatier, J.1
Poullain, S.2
Latteux, P.3
Thomas, J.L.4
Oustaloup, A.5
-
7
-
-
0032653954
-
μ controllers
-
1056.93542 10.1109/9.739144 1666937
-
μ controllers IEEE Trans. on Automatic Control 44 1 208 214 1056.93542 10.1109/9.739144 1666937
-
(1999)
IEEE Trans. on Automatic Control
, vol.44
, Issue.1
, pp. 208-214
-
-
Podlubny, I.1
-
8
-
-
33244482248
-
Ziegler-Nichols type tuning rules for fractional PID controllers
-
Long Beach, California
-
D. Valério and J. S. da Costa, "Ziegler-Nichols type tuning rules for fractional PID controllers," Proc. of IDETC/CIE 2005, Long Beach, California, 2005.
-
(2005)
Proc. of IDETC/CIE 2005
-
-
D. Valério1
-
9
-
-
0001805106
-
Discrete-time fractional-order controllers
-
1111.93307 1807360
-
J. Machado 2001 Discrete-time fractional-order controllers Fract. Calc. Appl. Anal. 4 1 47 66 1111.93307 1807360
-
(2001)
Fract. Calc. Appl. Anal.
, vol.4
, Issue.1
, pp. 47-66
-
-
MacHado, J.1
-
10
-
-
41549148741
-
Tuning and auto-tuning of fractional order controllers for industry applications
-
DOI 10.1016/j.conengprac.2007.08.006, PII S0967066107001566
-
C. A. Monje B. M. Vinagre V. Feliu, et al. 2008 Tuning and auto-tuning of fractional order controllers for industry applications Control Engineering Practice 16 798 812 10.1016/j.conengprac.2007.08.006 (Pubitemid 351470859)
-
(2008)
Control Engineering Practice
, vol.16
, Issue.7
, pp. 798-812
-
-
Monje, C.A.1
Vinagre, B.M.2
Feliu, V.3
Chen, Y.4
-
11
-
-
33645518062
-
Stabilization of unstable first-order time-delay systems using fractionalorder PD controllers
-
Y. C. Cheng C. Hwang 2006 Stabilization of unstable first-order time-delay systems using fractionalorder PD controllers J. of the Chinese Inst. of Engineers 29 241 249
-
(2006)
J. of the Chinese Inst. of Engineers
, vol.29
, pp. 241-249
-
-
Cheng, Y.C.1
Hwang, C.2
-
12
-
-
35448968971
-
Stabilization using fractional-order PI and PID controllers
-
DOI 10.1007/s11071-007-9214-5
-
S. E. Hamamci 2008 Stablization using fractional-order PI and PID controllers Nonlinear Dyn. 51 329 343 1170.93023 10.1007/s11071-007-9214-5 (Pubitemid 47632368)
-
(2008)
Nonlinear Dynamics
, vol.51
, Issue.1-2
, pp. 329-343
-
-
Hamamci, S.E.1
-
14
-
-
33745872964
-
Robust stability check of fractional order linear time invariant systems with interval uncertainties
-
DOI 10.1016/j.sigpro.2006.02.011, PII S0165168406000478, Fractional Calculus Applications in Signals and Systems
-
Y. Q. Chen H. S. Ahn I. Podlubny 2006 Robust stability check of fractional order linear time invariant systems with interval uncertainties Signal Processing 86 2611 2618 1172.94385 10.1016/j.sigpro.2006.02.011 (Pubitemid 44026624)
-
(2006)
Signal Processing
, vol.86
, Issue.10
, pp. 2611-2618
-
-
Chen, Y.Q.1
Ahn, H.-S.2
Podlubny, I.3
-
15
-
-
61549083723
-
Robust stability analysis of fractional order interval polynomials
-
10.1016/j.isatra.2009.01.002
-
N. Tan Ö. F. F. Özguven M. M. Özyetkin 2009 Robust stability analysis of fractional order interval polynomials ISA Transaction 48 2 166 172 10.1016/j.isatra.2009.01.002
-
(2009)
ISA Transaction
, vol.48
, Issue.2
, pp. 166-172
-
-
Tan, N.1
Özguven, Ö.F.F.2
Özyetkin, M.M.3
-
16
-
-
80755162660
-
Computation of spectral sets for uncertain linear fractional-order systems using interval constraints propagation
-
Ankara
-
P. S. V. Nataraj, "Computation of spectral sets for uncertain linear fractional-order systems using interval constraints propagation," Proc. of the 3rd IFAC W. on Frac.Diff. and It's Appl., Ankara, 2008.
-
(2008)
Proc. of the 3rd IFAC W. on Frac.Diff. and It's Appl.
-
-
Nataraj, P.S.V.1
-
17
-
-
0001725233
-
Asymptotic stability of an equilibrium position of a family of systems of linear differential equations
-
0409.34043
-
V. L. Kharitonov 1979 Asymptotic stability of an equilibrium position of a family of systems of linear differential equations Differential Equations 14 1483 1485 0409.34043
-
(1979)
Differential Equations
, vol.14
, pp. 1483-1485
-
-
Kharitonov, V.L.1
-
18
-
-
0023859609
-
Root location of an entire polytope of polynomials: It suffices to check the edges
-
A. C. Bartlett C. V. Hollot H. Lin 1988 Root location of an entire polytope of polynomials: it suffices to check the edges Mathematics of Controls, Signals and Sys. 1 61 71 0652.93048 10.1007/BF02551236 923276 (Pubitemid 18608943)
-
(1988)
Mathematics of Control, Signals, and Systems
, vol.1
, Issue.1
, pp. 61-71
-
-
Barlett, A.C.1
Hollot, C.V.2
Lin Huang3
-
19
-
-
0028370261
-
On the Nyquist Envelope of an interval plant family
-
0800.93982 10.1109/9.272342 1265429
-
C. V. Hollot R. Tempo 1994 On the Nyquist Envelope of an interval plant family IEEE Trans. on Automatic Control 39 391 396 0800.93982 10.1109/9.272342 1265429
-
(1994)
IEEE Trans. on Automatic Control
, vol.39
, pp. 391-396
-
-
Hollot, C.V.1
Tempo, R.2
-
20
-
-
0024629409
-
A generalization of Kharitonov's theorem: Robust stability of interval plants
-
0666.93100 10.1109/9.16420 980360
-
H. Chapellat S. P. Bhattacharyya 1989 A generalization of Kharitonov's theorem: robust stability of interval plants IEEE Trans. on Automatic Control 34 306 311 0666.93100 10.1109/9.16420 980360
-
(1989)
IEEE Trans. on Automatic Control
, vol.34
, pp. 306-311
-
-
Chapellat, H.1
Bhattacharyya, S.P.2
-
21
-
-
0034272515
-
Frequency response of uncertain systems: A 2q-convex parpolygonal approach
-
10.1049/ip-cta:20000636
-
N. Tan D. P. Atherton 2000 Frequency response of uncertain systems: a 2q-convex parpolygonal approach IEE Proc., Control Theory and Appl. 147 5 547 555 10.1049/ip-cta:20000636
-
(2000)
IEE Proc., Control Theory and Appl.
, vol.147
, Issue.5
, pp. 547-555
-
-
Tan, N.1
Atherton, D.P.2
-
25
-
-
79951659892
-
Nyquist envelope of fractional order transfer function with parametric uncertainty
-
D. Baleanu et al. eds., Springer Sci.+ Business Media
-
N. Tan, M. M. Ozyetkin, and C. Yeroglu, "Nyquist envelope of fractional order transfer function with parametric uncertainty," New Trends in Nanotech. and Frac. Calc. App., D. Baleanu et al. eds., Springer Sci.+ Business Media, pp. 487-494, 2010.
-
(2010)
New Trends in Nanotech. and Frac. Calc. App.
, pp. 487-494
-
-
Tan, N.1
Ozyetkin, M.M.2
Yeroglu, C.3
|