메뉴 건너뛰기




Volumn E94-D, Issue 2, 2011, Pages 379-383

Laplacian support vector machines with multi-kernel learning

Author keywords

Laplacian support vector machine; Manifold regularization; Multikernel learning; Semi supervised learning

Indexed keywords

CLASSIFICATION (OF INFORMATION); LAPLACE TRANSFORMS; LEARNING ALGORITHMS; LEARNING SYSTEMS; SUPERVISED LEARNING;

EID: 79951489641     PISSN: 09168532     EISSN: 17451361     Source Type: Journal    
DOI: 10.1587/transinf.E94.D.379     Document Type: Article
Times cited : (6)

References (22)
  • 1
    • 0005977840 scopus 로고    scopus 로고
    • Technical Report, School of Informatics, The University of Edinburgh, Edinburgh, U.K.
    • M. Seeger, Learning with labeled and unlabeled data, Technical Report, School of Informatics, The University of Edinburgh, Edinburgh, U.K., 2000.
    • (2000) Learning with Labeled and Unlabeled Data
    • Seeger, M.1
  • 2
    • 33745456231 scopus 로고    scopus 로고
    • Technical Report TR-1530, Department of Computer Science, University ofWisconsin, Madison, U.S.A.
    • X. Zhu, Semi-supervised learning literature survey, Technical Report TR-1530, Department of Computer Science, University ofWisconsin, Madison, U.S.A., 2005.
    • (2005) Semi-supervised Learning Literature Survey
    • Zhu, X.1
  • 5
    • 78649332727 scopus 로고    scopus 로고
    • Technical Report, Department of Computer Science, Simon Fraser University, Vancouver, Canada
    • G. Haffari, A survey on inductive semi-supervised learning, Technical Report, Department of Computer Science, Simon Fraser University, Vancouver, Canada, 2006.
    • (2006) A Survey on Inductive Semi-supervised Learning
    • Haffari, G.1
  • 6
    • 26444592207 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data with label propagation
    • Carnegie Mellon Univ.
    • X. Zhu and Z. Ghahramani, Learning from Labeled and Unlabeled Data with Label Propagation, Technical Report CMU-CALD-02-107, Carnegie Mellon Univ., 2002.
    • (2002) Technical Report CMU-CALD-02-107
    • Zhu, X.1    Ghahramani, Z.2
  • 8
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph min-cuts
    • A. Blum and S. Chawla, "Learning from labeled and unlabeled data using graph min-cuts," Proc. 18th Int'l Conf. Machine Learning, pp.19-26, 2001.
    • (2001) Proc. 18th Int'l Conf. Machine Learning , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 9
    • 1942484960 scopus 로고    scopus 로고
    • Transductive learning via spectral graph partitioning
    • T. Joachims, "Transductive learning via spectral graph partitioning," Proc. 20th Int'l Conf. Machine Learning, pp.290-297, 2003.
    • (2003) Proc. 20th Int'l Conf. Machine Learning , pp. 290-297
    • Joachims, T.1
  • 11
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples," Journal of Machine Learning Research, vol.7, pp.2399- 2434, 2006. (Pubitemid 44708005)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 13
    • 84858766876 scopus 로고    scopus 로고
    • Exploring large feature spaces with hierarchical multiple kernel learning
    • F.R. Bach, "Exploring large feature spaces with hierarchical multiple kernel learning," NIPS, pp.105-112, 2008.
    • (2008) NIPS , pp. 105-112
    • Bach, F.R.1
  • 18
    • 78049379109 scopus 로고    scopus 로고
    • Sparsity-accuracy trade-off in MKL
    • Whistler, Canada
    • R. Tomioka and T. Suzuki, "Sparsity-accuracy trade-off in MKL," NIPS 2009 Workshop, Whistler, Canada, 2009.
    • (2009) NIPS 2009 Workshop
    • Tomioka, R.1    Suzuki, T.2
  • 19
    • 85027202283 scopus 로고    scopus 로고
    • UCI machine learning repository
    • UCI machine learning repository, http://www.ics.uci.edu/ mlearn/
  • 21
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • R. Fergus, P. Perona, and A. Zisserman, "Object class recognition by unsupervised scale-invariant learning," Proc. CVPR, pp.264-271, 2003.
    • (2003) Proc. CVPR , pp. 264-271
    • Fergus, R.1    Perona, P.2    Zisserman, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.