메뉴 건너뛰기




Volumn , Issue , 2010, Pages 91-96

Fuzzy logic-based for predicting roughness performance of tialn coating

Author keywords

Fuzzy logic; PVD magnetron sputtering; Roughness; TiAlN coating

Indexed keywords

COATING PROCESS; FUZZY LOGIC MODEL; FUZZY MODELS; NEW APPLICATIONS; PROCESS PARAMETERS; PVD MAGNETRON SPUTTERING; ROUGHNESS; SPUTTERING POWER; TIALN COATINGS; TITANIUM ALUMINUM NITRIDE;

EID: 79851477429     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISDA.2010.5687284     Document Type: Conference Paper
Times cited : (11)

References (17)
  • 2
    • 0031245551 scopus 로고    scopus 로고
    • Deposition of (Ti,Al)N thin films by organometallic chemical vapor deposition: Thermodynamic predictions and experimental results
    • PII S0257897297004398
    • S. Gilles, N. Bourhila, S. Ikeda, C. Bernard, R. Madar, "Deposition of (Ti,Al)N thin films by organometallic chemical vapor deposition: thermodynarnic predictions and experimental results", Surface and Coatings Technology, vol. 94-95, October 1997, pp. 285-290. (Pubitemid 127404537)
    • (1997) Surface and Coatings Technology , vol.94-95 , pp. 285-290
    • Gilles, S.1    Bourhila, N.2    Ikeda, S.3    Bernard, C.4    Madar, R.5
  • 4
    • 33646773258 scopus 로고    scopus 로고
    • Prediction of minimum surface roughness in end milling mold part using neural network and genetic algorithms
    • 5-744
    • H. Oktem, T. Erzurumlu, F. Erzinchanli, "Prediction of minimum surface roughness in end milling mold part using neural network and genetic algorithms", Int. J. of Materials and Design, vol. 27, 2006, pp.73 5-744.
    • (2006) Int. J. of Materials and Design , vol.27 , pp. 73
    • Oktem, H.1    Erzurumlu, T.2    Erzinchanli, F.3
  • 5
    • 17044437800 scopus 로고    scopus 로고
    • Design and development of artificial neural networks for depositing powders in coating treatment
    • DOI 10.1016/j.apsusc.2004.10.041, PII S0169433204015260
    • M.-D. Jean, C.-D. Liu and J.-T. Wang, "Design and development of artificial neural networks for depositing powders in coating treatment", Applied Surface Science, vol. 245, no.1-4, 30 May 2005, pp. 290-303. (Pubitemid 40497287)
    • (2005) Applied Surface Science , vol.245 , Issue.1-4 , pp. 290-303
    • Jean, M.-D.1    Liu, C.-D.2    Wang, J.-T.3
  • 7
    • 33751062861 scopus 로고    scopus 로고
    • Artificial neural network-based prediction technique for wear loss quantities in Mo coatings
    • DOI 10.1016/j.wear.2006.01.040, PII S0043164806000718
    • H. Cetinel, H. Ozturk, E. Celik, and B. Karlik, "Artificial neural network-based prediction technique for wear loss quantities in Mo coating", Int. Journal of Wear, vol.26, 2006, pp.1064-1068 (Pubitemid 44755079)
    • (2006) Wear , vol.261 , Issue.10 , pp. 1064-1068
    • Cetinel, H.1    Ozturk, H.2    Celik, E.3    Karlik, B.4
  • 9
    • 55849137264 scopus 로고    scopus 로고
    • Comparison of regression model and artificial neural network model for the prediction of volume percent of diamond deposition in ni-diamond composite coating
    • K. Ramanathan, V.M. Periasamy, and U. Natarajan, "Comparison of regression model and artificial neural network model for the prediction of volume percent of diamond deposition in ni-diamond composite coating", Portugaliae Electrochimica Acta. vol.26, no.4, 2008, pp. 361-368.
    • (2008) Portugaliae Electrochimica Acta , vol.26 , Issue.4 , pp. 361-368
    • Ramanathan, K.1    Periasamy, V.M.2    Natarajan, U.3
  • 11
    • 61849114650 scopus 로고    scopus 로고
    • Application of artificial neural networks to predict the grain size of nano-crystalline nickel coating
    • A.M. Rashidi, A.R. Eivani, and A. Amadeh, "Application of artificial neural networks to predict the grain size of nano-crystalline nickel coating", Int. Journal of Computational Materials Science, vol. 45, 2009, pp. 499-504.
    • (2009) Int. Journal of Computational Materials Science , vol.45 , pp. 499-504
    • Rashidi, A.M.1    Eivani, A.R.2    Amadeh, A.3
  • 12
    • 74249115778 scopus 로고    scopus 로고
    • Application of soft computing techniques in machining performance prediction and optimization: A literature review
    • M. Chandrasekaran, M. Muralidhar, C Murali Krishna and U.S. Dixit, "Application of soft computing techniques in machining performance prediction and optimization: a literature review", Int. Journal of Advanced manufacturing Technology. vol.46, no.5-8, 2009, pp. 445-464
    • (2009) Int. Journal of Advanced Manufacturing Technology , vol.46 , Issue.5-8 , pp. 445-464
    • Chandrasekaran, M.1    Muralidhar, M.2    Murali Krishna, C.3    Dixit, U.S.4
  • 13
    • 33344465103 scopus 로고    scopus 로고
    • A user-friendly fuzzy-based system for the selection of electro discharge machining process parameters
    • DOI 10.1016/j.jmatprotec.2005.09.023, PII S0924013605009064
    • O. Yilmaz, O. Eyercioglu and N. N. Z. Gindy, "A user-friendly fuzzy-based system for the selection of electro discharge machining process parameters", J. Material Processing Tech., vol. 172, no.4, 2006, pp. 363-371. (Pubitemid 43289071)
    • (2006) Journal of Materials Processing Technology , vol.172 , Issue.3 , pp. 363-371
    • Yilmaz, O.1    Eyercioglu, O.2    Gindy, N.N.Z.3
  • 15
    • 0037399640 scopus 로고    scopus 로고
    • Data selection for turning carbon steel using fuzzy logic
    • K. Hasmi, I. D. Graham and B. Mills, "Data selection for turning carbon steel using fuzzy logic", J. Material Processing Technology, vol. 135, no.4, 2006, pp. 44-58.
    • (2006) J. Material Processing Technology , vol.135 , Issue.4 , pp. 44-58
    • Hasmi, K.1    Graham, I.D.2    Mills, B.3
  • 17
    • 0033117056 scopus 로고    scopus 로고
    • An in-process surface recognition system based on neural network in end milling cutting operation
    • Y. Tsai, J.C. Chen and S. Lou, "An in-process surface recognition system based on neural network in end milling cutting operation", Int. J. Machine Tools & Manufacture, vol.39, 1999, pp. 583-605.
    • (1999) Int. J. Machine Tools & Manufacture , vol.39 , pp. 583-605
    • Tsai, Y.1    Chen, J.C.2    Lou, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.