-
1
-
-
0001079995
-
Concavity of certain maps on positive definite matrices and applications to Hadamard products
-
Ando, T.: Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra Appl. 26, 203-241 (1979).
-
(1979)
Linear Algebra Appl.
, vol.26
, pp. 203-241
-
-
Ando, T.1
-
2
-
-
33947134434
-
Operational approach to Uhlmann's holonomy
-
032106
-
Aberg, J., Kult, D., Sjöquist, D., Oi, K. L.: Operational approach to Uhlmann's holonomy. Phys. Rev. A 75, 032106 (2007).
-
(2007)
Phys. Rev. A
, vol.75
-
-
Aberg, J.1
Kult, D.2
Sjöquist, D.3
Oi, K.L.4
-
4
-
-
0011446860
-
Stochastic linear maps and transition probability
-
Alberti, P. M., Uhlmann, A.: Stochastic linear maps and transition probability. Lett. Math. Phys. 7, 107-112 (1983).
-
(1983)
Lett. Math. Phys.
, vol.7
, pp. 107-112
-
-
Alberti, P.M.1
Uhlmann, A.2
-
6
-
-
51249180584
-
Remark on transition probability
-
Araki, H., Raggio, G.: Remark on transition probability. Lett. Math. Phys. 6, 237-240 (1982).
-
(1982)
Lett. Math. Phys.
, vol.6
, pp. 237-240
-
-
Araki, H.1
Raggio, G.2
-
7
-
-
79751533943
-
Noncommuting mixed states cannot be broadcast
-
Barnum, H., Caves, C. A., Fuchs, C. A., Jozsa, R., Schumacher, B.: Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 83, 1054-1057 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.83
, pp. 1054-1057
-
-
Barnum, H.1
Caves, C.A.2
Fuchs, C.A.3
Jozsa, R.4
Schumacher, B.5
-
10
-
-
0003365357
-
How and why to solve the operator equation AX-XB=Y
-
Bhatia, R., Rosenthal, P.: How and why to solve the operator equation AX-XB=Y. Bull. Lond. Math. Soc. 29, 1-21 (1997).
-
(1997)
Bull. Lond. Math. Soc.
, vol.29
, pp. 1-21
-
-
Bhatia, R.1
Rosenthal, P.2
-
11
-
-
0000519707
-
Statistical distance and the geometry of quantum states
-
Braunstein, S. L., Caves, C. M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439-3443 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 3439-3443
-
-
Braunstein, S.L.1
Caves, C.M.2
-
14
-
-
0041368569
-
Geometry of positive operators and Uhlmann's approach to the geometric phase
-
Corach, G., Maestripieri, A. L.: Geometry of positive operators and Uhlmann's approach to the geometric phase. Rep. Math. Phys. 47, 287-299 (2001).
-
(2001)
Rep. Math. Phys.
, vol.47
, pp. 287-299
-
-
Corach, G.1
Maestripieri, A.L.2
-
15
-
-
56449112204
-
Geometry of state spaces
-
Lecture Notes in Physics, A. Buchleitner, C. Viviescas, and M. Tiersch (Eds.), Berlin: Springer
-
Crell, B., Uhlmann, A.: Geometry of state spaces. In: Buchleitner, A., Viviescas, C., Tiersch, M. (eds.) Entanglement and Decoherence. Lecture Notes in Physics, vol. 768, pp. 1-60. Springer, Berlin (2009).
-
(2009)
Entanglement and Decoherence
, vol.768
, pp. 1-60
-
-
Crell, B.1
Uhlmann, A.2
-
16
-
-
0001534046
-
On quantum holonomy for mixed states
-
Dabrowski, L., Grosse, H.: On quantum holonomy for mixed states. Lett. Math. Phys. 19, 205 (1990).
-
(1990)
Lett. Math. Phys.
, vol.19
, pp. 205
-
-
Dabrowski, L.1
Grosse, H.2
-
17
-
-
0039714994
-
On the Riemann metric in the space of density matrices
-
Dittmann, J.: On the Riemann metric in the space of density matrices. Rep. Math. Phys. 36, 309 (1995).
-
(1995)
Rep. Math. Phys.
, vol.36
, pp. 309
-
-
Dittmann, J.1
-
18
-
-
27144468635
-
Geodesic and the best measurement for distinguishing quantum states
-
Ericsson, A.: Geodesic and the best measurement for distinguishing quantum states. J. Phys. A, Math. Gen. 38, L725-L730 (2005).
-
(2005)
J. Phys. A, Math. Gen.
, vol.38
-
-
Ericsson, A.1
-
20
-
-
51349163744
-
Fidelity for mixed quantum states
-
Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315-2323 (1994).
-
(1994)
J. Mod. Opt.
, vol.41
, pp. 2315-2323
-
-
Jozsa, R.1
-
22
-
-
56849129362
-
Sub- and super-fidelity as bounds for quantum fidelity
-
Miszczak, T. A., Puchala, Z., Horodecki, P., Uhlmann, A., Zyczkowski, K.: Sub- and super-fidelity as bounds for quantum fidelity. Quantum Inf. Comput. 9, 0103-0130 (2009).
-
(2009)
Quantum Inf. Comput.
, vol.9
, pp. 0103-0130
-
-
Miszczak, T.A.1
Puchala, Z.2
Horodecki, P.3
Uhlmann, A.4
Zyczkowski, K.5
-
23
-
-
79751538093
-
-
arXiv: 0806. 1150
-
Mendonca, P. E. M. F., Napolitano, R. D. J., Marchiolli, M. A., Foster, C. J., Liang, Y.-C.: An alternative fidelity measure for quantum states. arXiv: 0806. 1150.
-
An alternative fidelity measure for quantum states
-
-
Mendonca, P.E.M.F.1
Napolitano, R.D.J.2
Marchiolli, M.A.3
Foster, C.J.4
Liang, Y.-C.5
-
25
-
-
0001438007
-
Functional calculus for sesquilinear forms and the purification map
-
Pusz, W., Woronowicz, L.: Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 8, 159-170 (1975).
-
(1975)
Rep. Math. Phys.
, vol.8
, pp. 159-170
-
-
Pusz, W.1
Woronowicz, L.2
-
26
-
-
0040911531
-
Bures geometry of the three-level quantum system
-
Slater, P.: Bures geometry of the three-level quantum system. J. Geom. Phys. 39, 207-216 (2001).
-
(2001)
J. Geom. Phys.
, vol.39
, pp. 207-216
-
-
Slater, P.1
-
27
-
-
0038751094
-
Mixed states holonomy
-
Slater, P.: Mixed states holonomy. Lett. Math. Phys. 60, 123-133 (2002).
-
(2002)
Lett. Math. Phys.
, vol.60
, pp. 123-133
-
-
Slater, P.1
-
28
-
-
0031161406
-
A certain class of Einstein-Yang-Mills systems
-
Rudolph, G., Tok, T.: A certain class of Einstein-Yang-Mills systems. Rep. Math. Phys. 39, 433-446 (1997).
-
(1997)
Rep. Math. Phys.
, vol.39
, pp. 433-446
-
-
Rudolph, G.1
Tok, T.2
-
30
-
-
0343012756
-
Parallel transport and quantum holonomy along density operators
-
Uhlmann, A.: Parallel transport and quantum holonomy along density operators. Rep. Math. Phys. 24, 229-240 (1986).
-
(1986)
Rep. Math. Phys.
, vol.24
, pp. 229-240
-
-
Uhlmann, A.1
-
32
-
-
0000024981
-
Gauge field governing parallel transport along mixed states
-
Uhlmann, A.: Gauge field governing parallel transport along mixed states. Lett. Math. Phys. 21, 229-236 (1991).
-
(1991)
Lett. Math. Phys.
, vol.21
, pp. 229-236
-
-
Uhlmann, A.1
|