메뉴 건너뛰기




Volumn 56, Issue 3, 2011, Pages 359-370

Multi-source temporal data aggregation in wireless sensor networks

Author keywords

BP neural network; Data aggregation; Feature selection; Particle swarm optimization; Wireless sensor networks

Indexed keywords

BP NEURAL NETWORKS; DATA AGGREGATION; DATA PREDICTION ALGORITHMS; DATA SETS; DATA TRANSMISSION; ENERGY EFFICIENT; ERROR THRESHOLD; FEATURE SELECTION; FEATURE SELECTION ALGORITHM; HISTORICAL DATA; IMPROVED BP NEURAL NETWORK; MULTISOURCES; NEW MODEL; POTENTIAL LAW; TEMPORAL DATA;

EID: 79751527712     PISSN: 09296212     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11277-010-9976-9     Document Type: Article
Times cited : (75)

References (16)
  • 2
    • 36448980644 scopus 로고    scopus 로고
    • Energy-aware data aggregation for grid-based wireless sensor networks with a mobile sink
    • DOI 10.1007/s11277-007-9325-9
    • N.-C. Wang Y.-F. Huang J.-S. Chen P.-C. Yeh 2007 Energy-aware data aggregation for grid-based wireless sensor networks with a mobile sink Wireless Personal Communications 43 4 1539 1551 10.1007/s11277-007-9325-9 (Pubitemid 350165403)
    • (2007) Wireless Personal Communications , vol.43 , Issue.4 , pp. 1539-1551
    • Wang, N.-C.1    Huang, Y.-F.2    Chen, J.-S.3    Yeh, P.-C.4
  • 5
    • 84978428047 scopus 로고    scopus 로고
    • TAG: A tiny AGgregation service for ad-hoc sensor networks
    • 10.1145/844128.844142
    • S. Madden M. J. Franklin J. M. Hellerstein W. Hong 2002 TAG: A tiny AGgregation service for ad-hoc sensor networks SIGOPS Oper. Syst. Rev 36 SI 131 146 10.1145/844128.844142
    • (2002) SIGOPS Oper. Syst. Rev , vol.36 , Issue.SI , pp. 131-146
    • Madden, S.1    Franklin, M.J.2    Hellerstein, J.M.3    Hong, W.4
  • 7
    • 33749644725 scopus 로고    scopus 로고
    • Approximate data collection in sensor networks using probabilistic models
    • DOI 10.1109/ICDE.2006.21, 1617416, Proceedings of the 22nd International Conference on Data Engineering, ICDE '06
    • D. Chu A. Deshpande J. M. Hellerstein W. Hong 2006 Approximate data collection in sensor networks using probabilistic models 22nd International Conference on Data Engineering 4 48 53 10.1109/ICDE.2006.21 (Pubitemid 44539840)
    • (2006) Proceedings - International Conference on Data Engineering , vol.2006 , pp. 48
    • Chu, D.1    Deshpande, A.2    Hellerstein, J.M.3    Hong, W.4
  • 9
    • 70349567234 scopus 로고    scopus 로고
    • Fault-tolerance data aggregation for clustering wireless sensor network
    • 10.1007/s11277-008-9598-7
    • S. Q. Ren J. S. Park 2009 Fault-tolerance data aggregation for clustering wireless sensor network Wireless Personal Communications 51 1 179 192 10.1007/s11277-008-9598-7
    • (2009) Wireless Personal Communications , vol.51 , Issue.1 , pp. 179-192
    • Ren, S.Q.1    Park, J.S.2
  • 12
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • DOI 10.1142/S0219720005001004, PII S0219720005001004
    • C. Ding H. Peng 2005 Minimum redundancy feature selection from microarray gene expression data Journal of Bioinformatics and Computational Biology 3 2 185 206 10.1142/S0219720005001004 2159941 (Pubitemid 40561382)
    • (2005) Journal of Bioinformatics and Computational Biology , vol.3 , Issue.2 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 13
    • 0032913392 scopus 로고    scopus 로고
    • Artificial neural network as a novel method to optimize pharmaceutical formulations
    • DOI 10.1023/A:1011986823850
    • K. Takayama M. Fujikawa T. Nagai 1999 Artificial neural network as a novel method to optimize pharmaceutical formulations Pharmaceutical research 16 1 1 6 (Pubitemid 29047449)
    • (1999) Pharmaceutical Research , vol.16 , Issue.1 , pp. 1-6
    • Takayama, K.1    Fujikawa, M.2    Nagai, T.3
  • 15
    • 74049125753 scopus 로고    scopus 로고
    • UCI (2006-03)
    • UCI (2006-03). (1999). KDD Cup competition. http://kdd.ics.uci.edu/ databases/kddcup99/kddcup99.html
    • (1999) KDD Cup Competition


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.